BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11580298)

  • 1. A face on transmembrane segment 8 of the lactose permease is important for transport activity.
    Green AL; Brooker RJ
    Biochemistry; 2001 Oct; 40(40):12220-9. PubMed ID: 11580298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A revised model for the structure and function of the lactose permease. Evidence that a face on transmembrane segment 2 is important for conformational changes.
    Green AL; Anderson EJ; Brooker RJ
    J Biol Chem; 2000 Jul; 275(30):23240-6. PubMed ID: 10807929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for structural symmetry and functional asymmetry in the lactose permease of Escherichia coli.
    Green AL; Hrodey HA; Brooker RJ
    Biochemistry; 2003 Sep; 42(38):11226-33. PubMed ID: 14503872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that transmembrane segment 2 of the lactose permease is part of a conformationally sensitive interface between the two halves of the protein.
    Jessen-Marshall AE; Brooker RJ
    J Biol Chem; 1996 Jan; 271(3):1400-4. PubMed ID: 8576130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppressor analysis of mutations in the loop 2-3 motif of lactose permease: evidence that glycine-64 is an important residue for conformational changes.
    Jessen-Marshall AE; Parker NJ; Brooker RJ
    J Bacteriol; 1997 Apr; 179(8):2616-22. PubMed ID: 9098060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of conserved residues in hydrophilic loop 8-9 of the lactose permease.
    Pazdernik NJ; Jessen-Marshall AE; Brooker RJ
    J Bacteriol; 1997 Feb; 179(3):735-41. PubMed ID: 9006028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The conserved motif in hydrophilic loop 2/3 and loop 8/9 of the lactose permease of Escherichia coli. Analysis of suppressor mutations.
    Cain SM; Matzke EA; Brooker RJ
    J Membr Biol; 2000 Jul; 176(2):159-68. PubMed ID: 10926681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cysteine-scanning mutagenesis of helix II and flanking hydrophilic domains in the lactose permease of Escherichia coli.
    Frillingos S; Sun J; Gonzalez A; Kaback HR
    Biochemistry; 1997 Jan; 36(1):269-73. PubMed ID: 8993343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cysteine-scanning mutagenesis of transmembrane domain XII and the flanking periplasmic loop in the lactose permease of EScherichia coli.
    He MM; Sun J; Kaback HR
    Biochemistry; 1996 Oct; 35(39):12909-14. PubMed ID: 8841135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli.
    Franco PJ; Brooker RJ
    J Biol Chem; 1994 Mar; 269(10):7379-86. PubMed ID: 7907327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of helix VIII in the lactose permease of Escherichia coli: I. Cys-scanning mutagenesis.
    Frillingos S; Ujwal ML; Sun J; Kaback HR
    Protein Sci; 1997 Feb; 6(2):431-7. PubMed ID: 9041646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of glycine residues in the structure and function of lactose permease, an Escherichia coli membrane transport protein.
    Jung K; Jung H; Colacurcio P; Kaback HR
    Biochemistry; 1995 Jan; 34(3):1030-9. PubMed ID: 7827019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off.
    Frillingos S; Gonzalez A; Kaback HR
    Biochemistry; 1997 Nov; 36(47):14284-90. PubMed ID: 9400367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Kaback HR
    Protein Sci; 1993 Jun; 2(6):1024-33. PubMed ID: 8318887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine scanning mutagenesis of the N-terminal 32 amino acid residues in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Persson B; Schwieger J; Cohan P; Kaback HR
    Protein Sci; 1994 Feb; 3(2):240-7. PubMed ID: 8003960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of charged residues in the conserved motif, G-X-X-X-D/E-R/K-X-G-[X]-R/K-R/K, of the lactose permease of Escherichia coli.
    Pazdernik NJ; Matzke EA; Jessen-Marshall AE; Brooker RJ
    J Membr Biol; 2000 Mar; 174(1):31-40. PubMed ID: 10741430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine-scanning mutagenesis of helix VI and the flanking hydrophilic domains on the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Apr; 35(16):5333-8. PubMed ID: 8611521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and characterization of lactose permease mutants with an enhanced recognition of maltose and diminished recognition of cellobiose.
    Collins JC; Permuth SF; Brooker RJ
    J Biol Chem; 1989 Sep; 264(25):14698-703. PubMed ID: 2670925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of lactose permease in contiguous fragments as a probe for membrane-spanning domains.
    Zen KH; McKenna E; Bibi E; Hardy D; Kaback HR
    Biochemistry; 1994 Jul; 33(27):8198-206. PubMed ID: 8031753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of suppressor mutations suggests that the two halves of the lactose permease function in a symmetrical manner.
    Pazdernik NJ; Cain SM; Brooker RJ
    J Biol Chem; 1997 Oct; 272(42):26110-6. PubMed ID: 9334175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.