These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 11580302)

  • 21. Role of Immune Cells in the Course of Central Nervous System Injury: Modulation with Natural Products.
    Magrone T; Russo MA; Jirillo E
    Curr Pharm Des; 2016; 22(6):701-8. PubMed ID: 26635268
    [TBL] [Abstract][Full Text] [Related]  

  • 22. T cells in the central nervous system: messengers of destruction or purveyors of protection?
    Walsh JT; Watson N; Kipnis J
    Immunology; 2014 Mar; 141(3):340-4. PubMed ID: 24708415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The remedy may lie in ourselves: prospects for immune cell therapy in central nervous system protection and repair.
    Schwartz M; Cohen I; Lazarov-Spiegler O; Moalem G; Yoles E
    J Mol Med (Berl); 1999 Oct; 77(10):713-7. PubMed ID: 10606206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sensing the microenvironment of the central nervous system: immune cells in the central nervous system and their pharmacological manipulation.
    Fabry Z; Schreiber HA; Harris MG; Sandor M
    Curr Opin Pharmacol; 2008 Aug; 8(4):496-507. PubMed ID: 18691672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alternatively activated macrophages in spinal cord injury and remission: another mechanism for repair?
    Shin T; Ahn M; Moon C; Kim S; Sim KB
    Mol Neurobiol; 2013 Jun; 47(3):1011-9. PubMed ID: 23321790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protective autoimmunity: regulation and prospects for vaccination after brain and spinal cord injuries.
    Schwartz M; Kipnis J
    Trends Mol Med; 2001 Jun; 7(6):252-8. PubMed ID: 11378514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages.
    Gensel JC; Donnelly DJ; Popovich PG
    Expert Opin Ther Targets; 2011 Apr; 15(4):505-18. PubMed ID: 21281256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chronic spinal cord injury attenuates influenza virus-specific antiviral immunity.
    Bracchi-Ricard V; Zha J; Smith A; Lopez-Rodriguez DM; Bethea JR; Andreansky S
    J Neuroinflammation; 2016 May; 13(1):125. PubMed ID: 27245318
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Immune modulatory therapies for spinal cord injury--past, present and future.
    Plemel JR; Wee Yong V; Stirling DP
    Exp Neurol; 2014 Aug; 258():91-104. PubMed ID: 25017890
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinal cord injury, immunodepression, and antigenic challenge.
    Held KS; Lane TE
    Semin Immunol; 2014 Oct; 26(5):415-20. PubMed ID: 24747011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lymphocytes and autoimmunity after spinal cord injury.
    Jones TB
    Exp Neurol; 2014 Aug; 258():78-90. PubMed ID: 25017889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Passive immunization with myelin basic protein activated T cells suppresses axonal dieback but does not promote axonal regeneration following spinal cord hemisection in adult rats.
    Wang HJ; Hu JG; Shen L; Wang R; Wang QY; Zhang C; Xi J; Zhou JS; Lü HZ
    Int J Neurosci; 2012 Aug; 122(8):458-65. PubMed ID: 22463720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microglia in central nervous system repair after injury.
    Jin X; Yamashita T
    J Biochem; 2016 May; 159(5):491-6. PubMed ID: 26861995
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of Sortilin in Models of Autoimmune Neuroinflammation.
    Reuter E; Weber J; Paterka M; Ploen R; Breiderhoff T; van Horssen J; Willnow TE; Siffrin V; Zipp F
    J Immunol; 2015 Dec; 195(12):5762-9. PubMed ID: 26566674
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facilitation of immune function, healing of pressure ulcers, and nutritional status in spinal cord injury patients.
    Cruse JM; Lewis RE; Roe DL; Dilioglou S; Blaine MC; Wallace WF; Chen RS
    Exp Mol Pathol; 2000 Feb; 68(1):38-54. PubMed ID: 10640453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental allergic encephalomyelitis. T cell trafficking to the central nervous system in a resistant Thy-1 congenic mouse strain.
    Skundric DS; Huston K; Shaw M; Tse HY; Raine CS
    Lab Invest; 1994 Nov; 71(5):671-9. PubMed ID: 7526038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of monocyte/macrophage migration to a spinal cord injury site by an antibody to the integrin alphaD: a potential new anti-inflammatory treatment.
    Mabon PJ; Weaver LC; Dekaban GA
    Exp Neurol; 2000 Nov; 166(1):52-64. PubMed ID: 11031083
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury.
    Popovich PG; Guan Z; Wei P; Huitinga I; van Rooijen N; Stokes BT
    Exp Neurol; 1999 Aug; 158(2):351-65. PubMed ID: 10415142
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immune regulatory mechanisms influence early pathology in spinal cord injury and in spontaneous autoimmune encephalomyelitis.
    Marcondes MC; Furtado GC; Wensky A; Curotto de Lafaille MA; Fox HS; Lafaille JJ
    Am J Pathol; 2005 Jun; 166(6):1749-60. PubMed ID: 15920160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system.
    Rawji KS; Mishra MK; Michaels NJ; Rivest S; Stys PK; Yong VW
    Brain; 2016 Mar; 139(Pt 3):653-61. PubMed ID: 26912633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.