These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 11580322)

  • 1. Dynamics of inherent structure in supercooled liquids near kinetic glass transition.
    Liao CY; Chen SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031202. PubMed ID: 11580322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape.
    Banerjee S; Dasgupta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fickian crossover and length scales from two point functions in supercooled liquids.
    Stariolo DA; Fabricius G
    J Chem Phys; 2006 Aug; 125(6):64505. PubMed ID: 16942296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of inherent structures in glass-forming materials: I. The vitrification process.
    Tsalikis DG; Lempesis N; Boulougouris GC; Theodorou DN
    J Phys Chem B; 2008 Aug; 112(34):10619-27. PubMed ID: 18671423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous dynamics of ionic liquids from molecular dynamics simulations.
    Habasaki J; Ngai KL
    J Chem Phys; 2008 Nov; 129(19):194501. PubMed ID: 19026060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saddles in the energy landscape probed by supercooled liquids.
    Angelani L; Di Leonardo R ; Ruocco G; Scala A; Sciortino F
    Phys Rev Lett; 2000 Dec; 85(25):5356-9. PubMed ID: 11135995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential energy landscape and mechanisms of diffusion in liquids.
    Keyes T; Chowdhary J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 1):041106. PubMed ID: 12005805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Configurational entropy and diffusivity of supercooled water.
    Scala A; Starr FW; La Nave E ; Sciortino F; Stanley HE
    Nature; 2000 Jul; 406(6792):166-9. PubMed ID: 10910351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining landscape-based criteria for freezing of liquids.
    Chakraborty SN; Chakravarty C
    J Chem Phys; 2007 Jun; 126(24):244512. PubMed ID: 17614569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inherent-structure dynamics and diffusion in liquids.
    Keyes T; Chowdhary J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):032201. PubMed ID: 11580370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anomalous diffusion in supercooled liquids: a long-range localization in particle trajectories.
    Oppelstrup T; Dzugutov M
    J Chem Phys; 2009 Jul; 131(4):044510. PubMed ID: 19655897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Direct Link between the Fragile-to-Strong Transition and Relaxation in Supercooled Liquids.
    Sun Q; Zhou C; Yue Y; Hu L
    J Phys Chem Lett; 2014 Apr; 5(7):1170-4. PubMed ID: 26274466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Configuration correlation governs slow dynamics of supercooled metallic liquids.
    Hu YC; Li YW; Yang Y; Guan PF; Bai HY; Wang WH
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6375-6380. PubMed ID: 29866833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid.
    Vogel M; Doliwa B; Heuer A; Glotzer SC
    J Chem Phys; 2004 Mar; 120(9):4404-14. PubMed ID: 15268609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the potential energy landscape of supercooled liquids and glasses.
    Rodney D; Schrøder T
    Eur Phys J E Soft Matter; 2011 Sep; 34(9):100. PubMed ID: 21947901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-Gaussian excitations model for the glass transition.
    Matyushov DV; Angell CA
    J Chem Phys; 2005 Jul; 123(3):34506. PubMed ID: 16080743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computing the viscosity of supercooled liquids.
    Kushima A; Lin X; Li J; Eapen J; Mauro JC; Qian X; Diep P; Yip S
    J Chem Phys; 2009 Jun; 130(22):224504. PubMed ID: 19530777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean-field theory, mode-coupling theory, and the onset temperature in supercooled liquids.
    Brumer Y; Reichman DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041202. PubMed ID: 15169010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of gold nanoparticles on structure and dynamics of binary Lennard-Jones liquid: direct space analysis.
    Separdar L; Davatolhagh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022305. PubMed ID: 23496514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.