These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 11580399)
1. Ground state nonuniversality in the random-field Ising model. Duxbury PM; Meinke JH Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):036112. PubMed ID: 11580399 [TBL] [Abstract][Full Text] [Related]
2. Restoration of dimensional reduction in the random-field Ising model at five dimensions. Fytas NG; Martín-Mayor V; Picco M; Sourlas N Phys Rev E; 2017 Apr; 95(4-1):042117. PubMed ID: 28505873 [TBL] [Abstract][Full Text] [Related]
3. Critical behavior of a three-dimensional random-bond Ising model using finite-time scaling with extensive Monte Carlo renormalization-group method. Xiong W; Zhong F; Yuan W; Fan S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051132. PubMed ID: 20866210 [TBL] [Abstract][Full Text] [Related]
4. Order parameter criticality of the d = 3 random-field Ising antiferromagnet Fe0.85Zn0.15F2. Ye F; Zhou L; Larochelle S; Lu L; Belanger DP; Greven M; Lederman D Phys Rev Lett; 2002 Oct; 89(15):157202. PubMed ID: 12366018 [TBL] [Abstract][Full Text] [Related]
5. Ground states and thermal states of the random field Ising model. Wu Y; Machta J Phys Rev Lett; 2005 Sep; 95(13):137208. PubMed ID: 16197175 [TBL] [Abstract][Full Text] [Related]
6. Universality in the three-dimensional random-field Ising model. Fytas NG; Martín-Mayor V Phys Rev Lett; 2013 May; 110(22):227201. PubMed ID: 23767743 [TBL] [Abstract][Full Text] [Related]
7. Spin-1/2 Ising-Heisenberg model with the pair XYZ Heisenberg interaction and quartic Ising interactions as the exactly soluble zero-field eight-vertex model. Strecka J; Canová L; Minami K Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051103. PubMed ID: 19518412 [TBL] [Abstract][Full Text] [Related]
8. Full nonuniversality of the symmetric 16-vertex model on the square lattice. Pospíšilová E; Krčmár R; Gendiar A; Šamaj L Phys Rev E; 2020 Jul; 102(1-1):012125. PubMed ID: 32795072 [TBL] [Abstract][Full Text] [Related]
9. Original electric-vertex formulation of the symmetric eight-vertex model on the square lattice is fully nonuniversal. Krčmár R; Šamaj L Phys Rev E; 2018 Jan; 97(1-1):012108. PubMed ID: 29448318 [TBL] [Abstract][Full Text] [Related]
10. Finite-size scaling in Ising-like systems with quenched random fields: evidence of hyperscaling violation. Vink RL; Fischer T; Binder K Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051134. PubMed ID: 21230464 [TBL] [Abstract][Full Text] [Related]
11. Multiparameter universality and directional nonuniversality of exact anisotropic critical correlation functions of the two-dimensional Ising universality class. Dohm V Phys Rev E; 2019 Nov; 100(5-1):050101. PubMed ID: 31869925 [TBL] [Abstract][Full Text] [Related]
12. Spin models with random anisotropy and reflection symmetry. Calabrese P; Pelissetto A; Vicari E Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036104. PubMed ID: 15524584 [TBL] [Abstract][Full Text] [Related]
13. Anomalous mean-field behavior of the fully connected Ising model. Colonna-Romano L; Gould H; Klein W Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042111. PubMed ID: 25375442 [TBL] [Abstract][Full Text] [Related]
14. Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field. Korniss G; White CJ; Rikvold PA; Novotny MA Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016120. PubMed ID: 11304327 [TBL] [Abstract][Full Text] [Related]
15. Fluctuation cumulant behavior for the field-pulse-induced magnetization-reversal transition in Ising models. Chatterjee A; Chakrabarti BK Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046113. PubMed ID: 12786442 [TBL] [Abstract][Full Text] [Related]
16. Infinite-randomness critical point in the two-dimensional disordered contact process. Vojta T; Farquhar A; Mast J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011111. PubMed ID: 19257005 [TBL] [Abstract][Full Text] [Related]
17. Strong-disorder fixed point in the dissipative random transverse-field Ising model. Schehr G; Rieger H Phys Rev Lett; 2006 Jun; 96(22):227201. PubMed ID: 16803340 [TBL] [Abstract][Full Text] [Related]
18. Fluids with quenched disorder: scaling of the free energy barrier near critical points. Fischer T; Vink RL J Phys Condens Matter; 2011 Jun; 23(23):234117. PubMed ID: 21613708 [TBL] [Abstract][Full Text] [Related]
19. Phase diagram and critical exponents of a Potts gauge glass. Jacobsen JL; Picco M Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026113. PubMed ID: 11863593 [TBL] [Abstract][Full Text] [Related]
20. Absorbing state phase transitions with quenched disorder. Hooyberghs J; Iglói F; Vanderzande C Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066140. PubMed ID: 15244700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]