These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 11580484)

  • 1. Superluminal pulse reflection in asymmetric one-dimensional photonic band gaps.
    Longhi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 2):037601. PubMed ID: 11580484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental observation of superluminal pulse reflection in a double-Lorentzian photonic band gap.
    Longhi S; Marano M; Laporta P; Belmonte M; Crespi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):045602. PubMed ID: 12005917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect.
    Liu NH; Zhu SY; Chen H; Wu X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046607. PubMed ID: 12006047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group delay tuning in active fiber Bragg gratings: from superluminal to subluminal pulse reflection.
    Longhi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056614. PubMed ID: 16383778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of superluminal optical tunneling times in double-barrier photonic band gaps.
    Longhi S; Laporta P; Belmonte M; Recami E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2B):046610. PubMed ID: 12006050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hamiltonian formulation of the nonlinear coupled mode equations.
    Pereira S; Sipe JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026606. PubMed ID: 12241310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous dispersion and superluminal group velocity in a coaxial photonic crystal: theory and experiment.
    Haché A; Poirier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):036608. PubMed ID: 11909286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time delay distribution in Bragg gratings.
    Ghiringhelli F; Zervas MN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2B):036604. PubMed ID: 11909282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic band gap enhancement in frequency-dependent dielectrics.
    Toader O; John S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046605. PubMed ID: 15600545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic crystal surface modes narrow-band filtering.
    Popov E; Enoch S
    Opt Express; 2005 Jul; 13(15):5783-90. PubMed ID: 19498582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultralow-threshold single-mode lasing based on a one-dimensional asymmetric photonic bandgap structure with liquid crystal as a defect layer.
    Wang HT; Lin JD; Lee CR; Lee W
    Opt Lett; 2014 Jun; 39(12):3516-9. PubMed ID: 24978525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction.
    Koch K
    Opt Express; 2001 Dec; 9(13):675. PubMed ID: 19424306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cylinder gratings in conical incidence with applications to modes of air-cored photonic crystal fibers.
    Smith GH; Botten LC; McPhedran RC; Nicorovici NA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056604. PubMed ID: 12513620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of self-trapping and rotation of higher-band gap solitons in two-dimensional photonic lattices.
    Xia S; Song D; Zong Y; Tang L; Chen Z
    Opt Express; 2015 Feb; 23(4):4397-405. PubMed ID: 25836476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon-polariton band structures of asymmetric T-shaped plasmonic gratings.
    Abbas MN; Chang YC; Shih MH
    Opt Express; 2010 Feb; 18(3):2509-14. PubMed ID: 20174078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures.
    D'Aguanno G; Centini M; Scalora M; Sibilia C; Bloemer MJ; Bowden CM; Haus JW; Bertolotti M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036610. PubMed ID: 11308791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-differentiated band dynamics of resonant leaky modes at the lattice Γ point.
    Lee SG; Kim SH; Kee CS; Magnusson R
    Opt Express; 2020 Dec; 28(26):39453-39462. PubMed ID: 33379494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superluminal reflection and transmission of light pulses via resonant four-wave mixing in cesium vapor.
    Jiang Q; Zhang Y; Wang D; Ahrens S; Zhang J; Zhu S
    Opt Express; 2016 Oct; 24(21):24451-24459. PubMed ID: 27828173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wavelength selective filter based on polarization control in a photonic bandgap structure with a defect.
    Andres-Arroyo A; Reece PJ; Johnson CM; Vora K; Karouta F; Jagadish C
    Opt Express; 2011 Dec; 19(25):25643-50. PubMed ID: 22273957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superluminal optical pulse propagation at 1.5 microm in periodic fiber Bragg gratings.
    Longhi S; Marano M; Laporta P; Belmonte M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):055602. PubMed ID: 11736006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.