These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Optimal higher-lying band gaps for photonic crystals with large dielectric contrast. Chern RL; Chao SD Opt Express; 2008 Oct; 16(21):16600-8. PubMed ID: 18852769 [TBL] [Abstract][Full Text] [Related]
25. Finite element method analysis of band gap and transmission of two-dimensional metallic photonic crystals at terahertz frequencies. Degirmenci E; Landais P Appl Opt; 2013 Oct; 52(30):7367-75. PubMed ID: 24216592 [TBL] [Abstract][Full Text] [Related]
26. Photonic band structure and symmetry properties of electromagnetic modes in photonic crystals. Cavalcanti SB; de Dios-Leyva M; Reyes-Gómez E; Oliveira LE Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026607. PubMed ID: 17358436 [TBL] [Abstract][Full Text] [Related]
27. Band-gap engineering in two-dimensional semiconductor-dielectric photonic crystals. Kushwaha MS; Martinez G Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):027601. PubMed ID: 15783461 [TBL] [Abstract][Full Text] [Related]
28. Switching from normal to anomalous dispersion in photonic crystal with Raman gain defect. Arkhipkin VG; Myslivets SA Opt Lett; 2014 Apr; 39(7):1803-6. PubMed ID: 24686609 [TBL] [Abstract][Full Text] [Related]
29. Thermodielectric generation of defect modes in a photonic liquid crystal. Hsiao YC; Wang HT; Lee W Opt Express; 2014 Feb; 22(3):3593-9. PubMed ID: 24663650 [TBL] [Abstract][Full Text] [Related]
30. Slow light and chromatic temporal dispersion in photonic crystal waveguides using femtosecond time of flight. Finlayson CE; Cattaneo F; Perney NM; Baumberg JJ; Netti MC; Zoorob ME; Charlton MD; Parker GJ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016619. PubMed ID: 16486307 [TBL] [Abstract][Full Text] [Related]
31. Coexistence of a self-induced transparency soliton and a Bragg soliton. Tseng HY; Chi S Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056606. PubMed ID: 12513622 [TBL] [Abstract][Full Text] [Related]
32. Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs. Gerace D; Andreani LC Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056603. PubMed ID: 15244959 [TBL] [Abstract][Full Text] [Related]
34. Time-frequency dynamics of superluminal pulse transition to the subluminal regime. Dorrah AH; Ramakrishnan A; Mojahedi M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033206. PubMed ID: 25871237 [TBL] [Abstract][Full Text] [Related]
35. Optical properties of inverted opal photonic band gap crystals with stacking disorder. Wang ZL; Chan CT; Zhang WY; Chen Z; Ming NB; Sheng P Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016612. PubMed ID: 12636630 [TBL] [Abstract][Full Text] [Related]
36. Optical properties of three-dimensional woodpile photonic crystals composed of circular cylinders with planar defect structures. Chung SH; Yang JY Appl Opt; 2011 Dec; 50(36):6657-66. PubMed ID: 22193196 [TBL] [Abstract][Full Text] [Related]
37. Calculation of optical-waveguide grating characteristics using Green's functions and Dyson's equation. Rindorf L; Mortensen NA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036616. PubMed ID: 17025773 [TBL] [Abstract][Full Text] [Related]
39. Analytical study of dispersion relations for shear horizontal wave propagation in plates with periodic stubs. Xu Y Ultrasonics; 2015 Aug; 61():114-20. PubMed ID: 25971157 [TBL] [Abstract][Full Text] [Related]