These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 11580664)

  • 1. Magnetic quantum dot: a magnetic transmission barrier and resonator.
    Sim HS; Ihm G; Kim N; Chang KJ
    Phys Rev Lett; 2001 Oct; 87(14):146601. PubMed ID: 11580664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantized magnetic confinement in quantum wires.
    Tarasov A; Hugger S; Xu H; Cerchez M; Heinzel T; Zozoulenko IV; Gasser-Szerer U; Reuter D; Wieck AD
    Phys Rev Lett; 2010 May; 104(18):186801. PubMed ID: 20482195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ballistic quantum spin Hall state and enhanced edge backscattering in strong magnetic fields.
    Tkachov G; Hankiewicz EM
    Phys Rev Lett; 2010 Apr; 104(16):166803. PubMed ID: 20482073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed electron transport through a ballistic quantum dot under microwave radiation.
    Zhang JQ; Vitkalov S; Kvon ZD; Portal JC; Wieck A
    Phys Rev Lett; 2006 Dec; 97(22):226807. PubMed ID: 17155830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic transport between quantum Hall states and quantum anomalous Hall states in a graphene nanoribbon based heterojunction.
    Xu XR; Cheng SG
    J Phys Condens Matter; 2013 Feb; 25(7):075304. PubMed ID: 23343589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 0.7 Structure and zero bias anomaly in ballistic hole quantum wires.
    Danneau R; Klochan O; Clarke WR; Ho LH; Micolich AP; Simmons MY; Hamilton AR; Pepper M; Ritchie DA
    Phys Rev Lett; 2008 Jan; 100(1):016403. PubMed ID: 18232794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magneto-conductance fingerprints of purely quantum states in the open quantum dot limit.
    Mendoza M; Ujevic S
    J Phys Condens Matter; 2012 Jun; 24(23):235302. PubMed ID: 22568973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-DeschĂȘnes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy spectrum and density of states for a graphene quantum dot in a magnetic field.
    Horing NJ; Liu SY
    J Phys Condens Matter; 2010 Jan; 22(2):025502. PubMed ID: 21386256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesoscopic features in the transport properties of a Kondo-correlated quantum dot in a magnetic field.
    Camjayi A; Arrachea L
    J Phys Condens Matter; 2014 Jan; 26(3):035602. PubMed ID: 24351510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference effects in a double quantum dot system with inter-dot Coulomb correlations.
    Sztenkiel D; Swirkowicz R
    J Phys Condens Matter; 2007 Apr; 19(17):176202. PubMed ID: 21690948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene in inhomogeneous magnetic fields: bound, quasi-bound and scattering states.
    Ramezani Masir M; Vasilopoulos P; Peeters FM
    J Phys Condens Matter; 2011 Aug; 23(31):315301. PubMed ID: 21757800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunnelling between the edges of two lateral quantum Hall systems.
    Kang W; Stormer HL; Pfeiffer LN; Baldwin KW; West KW
    Nature; 2000 Jan; 403(6765):59-61. PubMed ID: 10638749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission and scarring in graphene quantum dots.
    Huang L; Lai YC; Ferry DK; Akis R; Goodnick SM
    J Phys Condens Matter; 2009 Aug; 21(34):344203. PubMed ID: 21715778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum interference of magnetic edge channels activated by intersubband optical transitions in magnetically confined quantum wires.
    Nogaret A; Portal JC; Beere HE; Ritchie DA; Phillips C
    J Phys Condens Matter; 2009 Jan; 21(2):025303. PubMed ID: 21813973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation-induced resonances in transport through coupled quantum dots.
    Meden V; Marquardt F
    Phys Rev Lett; 2006 Apr; 96(14):146801. PubMed ID: 16712106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zeeman energy and spin relaxation in a one-electron quantum dot.
    Hanson R; Witkamp B; Vandersypen LM; van Beveren LH; Elzerman JM; Kouwenhoven LP
    Phys Rev Lett; 2003 Nov; 91(19):196802. PubMed ID: 14611599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron bunching in transport through quantum dots in a high magnetic field.
    Zarchin O; Chung YC; Heiblum M; Rohrlich D; Umansky V
    Phys Rev Lett; 2007 Feb; 98(6):066801. PubMed ID: 17358965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct imaging of electron states in open quantum dots.
    Aoki N; Brunner R; Burke AM; Akis R; Meisels R; Ferry DK; Ochiai Y
    Phys Rev Lett; 2012 Mar; 108(13):136804. PubMed ID: 22540721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.
    Chwiej T; Szafran B
    J Phys Condens Matter; 2013 Apr; 25(15):155802. PubMed ID: 23529068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.