These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 11581267)
1. Synthetic activity of Sso DNA polymerase Y1, an archaeal DinB-like DNA polymerase, is stimulated by processivity factors proliferating cell nuclear antigen and replication factor C. Grúz P; Pisani FM; Shimizu M; Yamada M; Hayashi I; Morikawa K; Nohmi T J Biol Chem; 2001 Dec; 276(50):47394-401. PubMed ID: 11581267 [TBL] [Abstract][Full Text] [Related]
2. Two DNA polymerase sliding clamps from the thermophilic archaeon Sulfolobus solfataricus. De Felice M; Sensen CW; Charlebois RL; Rossi M; Pisani FM J Mol Biol; 1999 Aug; 291(1):47-57. PubMed ID: 10438605 [TBL] [Abstract][Full Text] [Related]
3. Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus. Pisani FM; De Felice M; Carpentieri F; Rossi M J Mol Biol; 2000 Aug; 301(1):61-73. PubMed ID: 10926493 [TBL] [Abstract][Full Text] [Related]
4. Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic poleta. Boudsocq F; Iwai S; Hanaoka F; Woodgate R Nucleic Acids Res; 2001 Nov; 29(22):4607-16. PubMed ID: 11713310 [TBL] [Abstract][Full Text] [Related]
5. Assembly and distributive action of an archaeal DNA polymerase holoenzyme. Bauer RJ; Wolff ID; Zuo X; Lin HK; Trakselis MA J Mol Biol; 2013 Nov; 425(23):4820-36. PubMed ID: 24035812 [TBL] [Abstract][Full Text] [Related]
6. Biochemical evidence of a physical interaction between Sulfolobus solfataricus B-family and Y-family DNA polymerases. De Felice M; Medagli B; Esposito L; De Falco M; Pucci B; Rossi M; Grùz P; Nohmi T; Pisani FM Extremophiles; 2007 Mar; 11(2):277-82. PubMed ID: 17082970 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Zhou BL; Pata JD; Steitz TA Mol Cell; 2001 Aug; 8(2):427-37. PubMed ID: 11545744 [TBL] [Abstract][Full Text] [Related]
8. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. Bunting KA; Roe SM; Pearl LH EMBO J; 2003 Nov; 22(21):5883-92. PubMed ID: 14592985 [TBL] [Abstract][Full Text] [Related]
9. Structure-function relationship of the eukaryotic DNA replication factor, proliferating cell nuclear antigen. Fukuda K; Morioka H; Imajou S; Ikeda S; Ohtsuka E; Tsurimoto T J Biol Chem; 1995 Sep; 270(38):22527-34. PubMed ID: 7673244 [TBL] [Abstract][Full Text] [Related]
10. Functional interactions of a homolog of proliferating cell nuclear antigen with DNA polymerases in Archaea. Cann IK; Ishino S; Hayashi I; Komori K; Toh H; Morikawa K; Ishino Y J Bacteriol; 1999 Nov; 181(21):6591-9. PubMed ID: 10542158 [TBL] [Abstract][Full Text] [Related]
11. DNA binding strength increases the processivity and activity of a Y-Family DNA polymerase. Wu J; de Paz A; Zamft BM; Marblestone AH; Boyden ES; Kording KP; Tyo KEJ Sci Rep; 2017 Jul; 7(1):4756. PubMed ID: 28684739 [TBL] [Abstract][Full Text] [Related]
12. Fidelity of eucaryotic DNA polymerase delta holoenzyme from Schizosaccharomyces pombe. Chen X; Zuo S; Kelman Z; O'Donnell M; Hurwitz J; Goodman MF J Biol Chem; 2000 Jun; 275(23):17677-82. PubMed ID: 10748208 [TBL] [Abstract][Full Text] [Related]
13. Three proliferating cell nuclear antigen-like proteins found in the hyperthermophilic archaeon Aeropyrum pernix: interactions with the two DNA polymerases. Daimon K; Kawarabayasi Y; Kikuchi H; Sako Y; Ishino Y J Bacteriol; 2002 Feb; 184(3):687-94. PubMed ID: 11790738 [TBL] [Abstract][Full Text] [Related]
14. Domain organization and DNA-induced conformational changes of an archaeal family B DNA polymerase. Pisani FM; Manco G; Carratore V; Rossi M Biochemistry; 1996 Jul; 35(28):9158-66. PubMed ID: 8703921 [TBL] [Abstract][Full Text] [Related]
15. Distinctive genetic features exhibited by the Y-family DNA polymerases in Bacillus subtilis. Duigou S; Ehrlich SD; Noirot P; Noirot-Gros MF Mol Microbiol; 2004 Oct; 54(2):439-51. PubMed ID: 15469515 [TBL] [Abstract][Full Text] [Related]
16. Discrimination against major groove adducts by Y-family polymerases of the DinB subfamily. Walsh JM; Ippoliti PJ; Ronayne EA; Rozners E; Beuning PJ DNA Repair (Amst); 2013 Sep; 12(9):713-22. PubMed ID: 23791649 [TBL] [Abstract][Full Text] [Related]
17. Properties and functions of Escherichia coli: Pol IV and Pol V. Fuchs RP; Fujii S; Wagner J Adv Protein Chem; 2004; 69():229-64. PubMed ID: 15588845 [TBL] [Abstract][Full Text] [Related]
18. Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Silvian LF; Toth EA; Pham P; Goodman MF; Ellenberger T Nat Struct Biol; 2001 Nov; 8(11):984-9. PubMed ID: 11685247 [TBL] [Abstract][Full Text] [Related]
19. Functional interactions of an archaeal sliding clamp with mammalian clamp loader and DNA polymerase delta. Ishino Y; Tsurimoto T; Ishino S; Cann IK Genes Cells; 2001 Aug; 6(8):699-706. PubMed ID: 11532029 [TBL] [Abstract][Full Text] [Related]
20. The beta clamp targets DNA polymerase IV to DNA and strongly increases its processivity. Wagner J; Fujii S; Gruz P; Nohmi T; Fuchs RP EMBO Rep; 2000 Dec; 1(6):484-8. PubMed ID: 11263491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]