These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 11581327)

  • 1. Muscle tissue adaptations to hypoxia.
    Hoppeler H; Vogt M
    J Exp Biol; 2001 Sep; 204(Pt 18):3133-9. PubMed ID: 11581327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions.
    Vogt M; Puntschart A; Geiser J; Zuleger C; Billeter R; Hoppeler H
    J Appl Physiol (1985); 2001 Jul; 91(1):173-82. PubMed ID: 11408428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-altitude adaptations.
    Beall CM
    Lancet; 2003 Dec; 362 Suppl():s14-5. PubMed ID: 14698112
    [No Abstract]   [Full Text] [Related]  

  • 4. Acclimatization to 4100 m does not change capillary density or mRNA expression of potential angiogenesis regulatory factors in human skeletal muscle.
    Lundby C; Pilegaard H; Andersen JL; van Hall G; Sander M; Calbet JA
    J Exp Biol; 2004 Oct; 207(Pt 22):3865-71. PubMed ID: 15472017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Response of skeletal muscle mitochondria to hypoxia.
    Hoppeler H; Vogt M; Weibel ER; Flück M
    Exp Physiol; 2003 Jan; 88(1):109-19. PubMed ID: 12525860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performing at extreme altitude: muscle cellular and subcellular adaptations.
    Howald H; Hoppeler H
    Eur J Appl Physiol; 2003 Oct; 90(3-4):360-4. PubMed ID: 12898262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest.
    Levett DZ; Radford EJ; Menassa DA; Graber EF; Morash AJ; Hoppeler H; Clarke K; Martin DS; Ferguson-Smith AC; Montgomery HE; Grocott MP; Murray AJ;
    FASEB J; 2012 Apr; 26(4):1431-41. PubMed ID: 22186874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α.
    van Patot MC; Gassmann M
    High Alt Med Biol; 2011; 12(2):157-67. PubMed ID: 21718164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of hypoxia on muscular performance capacity: "living low--training high"].
    Vogt M; Billeter R; Hoppeler H
    Ther Umsch; 2003 Jul; 60(7):419-24. PubMed ID: 12956036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic hypoxia: common traits between chronic obstructive pulmonary disease and altitude.
    Raguso CA; Guinot SL; Janssens JP; Kayser B; Pichard C
    Curr Opin Clin Nutr Metab Care; 2004 Jul; 7(4):411-7. PubMed ID: 15192444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lessons in hypoxic adaptation from high-altitude populations.
    Strohl KP
    Sleep Breath; 2008 May; 12(2):115-21. PubMed ID: 18087741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle adaptation to altitude: tissue capillarity and capacity for aerobic metabolism.
    Mathieu-Costello O
    High Alt Med Biol; 2001; 2(3):413-25. PubMed ID: 11682021
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations.
    Ji LD; Qiu YQ; Xu J; Irwin DM; Tam SC; Tang NL; Zhang YP
    Mol Biol Evol; 2012 Nov; 29(11):3359-70. PubMed ID: 22628534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of human skeletal muscle tissue to hypoxia.
    Lundby C; Calbet JA; Robach P
    Cell Mol Life Sci; 2009 Nov; 66(22):3615-23. PubMed ID: 19756383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological adaptations of human skeletal muscle to chronic hypoxia.
    Hoppeler H; Kleinert E; Schlegel C; Claassen H; Howald H; Kayar SR; Cerretelli P
    Int J Sports Med; 1990 Feb; 11 Suppl 1():S3-9. PubMed ID: 2323861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasticity of the muscle proteome to exercise at altitude.
    Flueck M
    High Alt Med Biol; 2009; 10(2):183-93. PubMed ID: 19519225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining hypoxic methods for peak performance.
    Millet GP; Roels B; Schmitt L; Woorons X; Richalet JP
    Sports Med; 2010 Jan; 40(1):1-25. PubMed ID: 20020784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications.
    Murray AJ; Montgomery HE; Feelisch M; Grocott MPW; Martin DS
    Biochem Soc Trans; 2018 Jun; 46(3):599-607. PubMed ID: 29678953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The lactate paradox revisited in lowlanders during acclimatization to 4100 m and in high-altitude natives.
    van Hall G; Lundby C; Araoz M; Calbet JA; Sander M; Saltin B
    J Physiol; 2009 Mar; 587(Pt 5):1117-29. PubMed ID: 19139048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. King of the mountains: Tibetan and Sherpa physiological adaptations for life at high altitude.
    Gilbert-Kawai ET; Milledge JS; Grocott MP; Martin DS
    Physiology (Bethesda); 2014 Nov; 29(6):388-402. PubMed ID: 25362633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.