These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 11581336)

  • 1. Fluid volume control during short-term space flight and implications for human performance.
    Watenpaugh DE
    J Exp Biol; 2001 Sep; 204(Pt 18):3209-15. PubMed ID: 11581336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clinical aspects of the control of plasma volume at microgravity and during return to one gravity.
    Convertino VA
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S45-52. PubMed ID: 8897404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of body fluid volume and electrolyte concentrations in spaceflight.
    Smith SM; Krauhs JM; Leach CS
    Adv Space Biol Med; 1997; 6():123-65. PubMed ID: 9048137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma and blood volume in space.
    Diedrich A; Paranjape SY; Robertson D
    Am J Med Sci; 2007 Jul; 334(1):80-5. PubMed ID: 17630598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Renal and sympathoadrenal responses in space.
    Christensen NJ; Drummer C; Norsk P
    Am J Kidney Dis; 2001 Sep; 38(3):679-83. PubMed ID: 11532706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gravity and microgravity on intracranial pressure.
    Lawley JS; Petersen LG; Howden EJ; Sarma S; Cornwell WK; Zhang R; Whitworth LA; Williams MA; Levine BD
    J Physiol; 2017 Mar; 595(6):2115-2127. PubMed ID: 28092926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer systems analysis of spaceflight induced changes in left ventricular mass.
    Summers RL; Martin DS; Meck JV; Coleman TG
    Comput Biol Med; 2007 Mar; 37(3):358-63. PubMed ID: 16808910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthostatic stress is necessary to maintain the dynamic range of cardiovascular control in space.
    Baisch JF; Wolfram G; Beck L; Drummer C; Störmer I; Buckey J; Blomqvist G
    Pflugers Arch; 2000; 441(2-3 Suppl):R52-61. PubMed ID: 11200981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered astronaut lower limb and mass center kinematics in downward jumping following space flight.
    Newman DJ; Jackson DK; Bloomberg JJ
    Exp Brain Res; 1997 Oct; 117(1):30-42. PubMed ID: 9386002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of body fluid compartments during short-term spaceflight.
    Leach CS; Alfrey CP; Suki WN; Leonard JI; Rambaut PC; Inners LD; Smith SM; Lane HW; Krauhs JM
    J Appl Physiol (1985); 1996 Jul; 81(1):105-16. PubMed ID: 8828652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body fluid metabolism at actual and simulated microgravity.
    Gerzer R; Heer M; Drummer C
    Med Sci Sports Exerc; 1996 Oct; 28(10 Suppl):S32-5. PubMed ID: 8897401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endocrine, renal, and circulatory influences on fluid and electrolyte homeostasis during weightlessness: a joint Russian-U.S. project.
    Grigoriev AI; Huntoon CL; Morukov BV; Lane HW; Larina IM; Smith SM
    J Gravit Physiol; 1996 Sep; 3(2):83-6. PubMed ID: 11540295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is there resetting of central venous pressure in microgravity?
    Convertino VA; Ludwig DA; Elliott JJ; Wade CE
    J Gravit Physiol; 2001 Jul; 8(1):P51-2. PubMed ID: 12638621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water and sodium balances and their relation to body mass changes in microgravity.
    Drummer C; Hesse C; Baisch F; Norsk P; Elmann-Larsen B; Gerzer R; Heer M
    Eur J Clin Invest; 2000 Dec; 30(12):1066-75. PubMed ID: 11122321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiovascular response to lower body negative pressure stimulation before, during, and after space flight.
    Baisch F; Beck L; Blomqvist G; Wolfram G; Drescher J; Rome JL; Drummer C
    Eur J Clin Invest; 2000 Dec; 30(12):1055-65. PubMed ID: 11122320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The endocrine system in space flight.
    Leach CS; Johnson PC; Cintrón NM
    Acta Astronaut; 1988; 17(2):161-6. PubMed ID: 11537094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Orthostatic hypotension after space flight].
    Pavy-Le-Traon A; Vasseur P; Maillet A; Güell A; Bes A; Gharib C
    Presse Med; 1994 Jun; 23(22):1031-6. PubMed ID: 7971807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The water-salt balance and renal function in space flights and in model experiments].
    Morukov BV; Noskov VB; Larina IM; Natochin IuV
    Ross Fiziol Zh Im I M Sechenova; 2003 Mar; 89(3):356-67. PubMed ID: 12968528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes of hormones regulating electrolyte metabolism after space flight and hypokinesia.
    Macho L; Fickova M; Lichardus B; Kvetnansky R; Carrey RM; Grigoriev A; Popova IA; Tigranian RA; Noskov VB
    Acta Astronaut; 1992 Jul; 27():51-4. PubMed ID: 11537597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spacelab Life Sciences flight experiments: an integrated approach to the study of cardiovascular deconditioning and orthostatic hypotension.
    Gaffney FA
    Acta Astronaut; 1987; 15(5):291-4. PubMed ID: 11538833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.