BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11583160)

  • 1. Mutation of Tyr138 disrupts the structural coupling between the opposing domains in vertebrate calmodulin.
    Sun H; Yin D; Coffeen LA; Shea MA; Squier TC
    Biochemistry; 2001 Aug; 40(32):9605-17. PubMed ID: 11583160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-dependent structural coupling between opposing globular domains of calmodulin involves the central helix.
    Sun H; Yin D; Squier TC
    Biochemistry; 1999 Sep; 38(38):12266-79. PubMed ID: 10493794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural uncoupling between opposing domains of oxidized calmodulin underlies the enhanced binding affinity and inhibition of the plasma membrane Ca-ATPase.
    Chen B; Mayer MU; Squier TC
    Biochemistry; 2005 Mar; 44(12):4737-47. PubMed ID: 15779900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Closer proximity between opposing domains of vertebrate calmodulin following deletion of Met(145)-Lys(148).
    Yin D; Sun H; Ferrington DA; Squier TC
    Biochemistry; 2000 Aug; 39(33):10255-68. PubMed ID: 10956015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable conformation and dynamics of calmodulin complexed with peptides derived from the autoinhibitory domains of target proteins.
    Yao Y; Squier TC
    Biochemistry; 1996 May; 35(21):6815-27. PubMed ID: 8639633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic structure of the calmodulin-binding domain of the plasma membrane Ca-ATPase in native erythrocyte ghost membranes.
    Yao Y; Gao J; Squier TC
    Biochemistry; 1996 Sep; 35(37):12015-28. PubMed ID: 8810906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Helix A stabilization precedes amino-terminal lobe activation upon calcium binding to calmodulin.
    Chen B; Lowry DF; Mayer MU; Squier TC
    Biochemistry; 2008 Sep; 47(35):9220-6. PubMed ID: 18690719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-dependent stabilization of the central sequence between Met(76) and Ser(81) in vertebrate calmodulin.
    Qin Z; Squier TC
    Biophys J; 2001 Nov; 81(5):2908-18. PubMed ID: 11606301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonessential role for methionines in the productive association between calmodulin and the plasma membrane Ca-ATPase.
    Yin D; Sun H; Weaver RF; Squier TC
    Biochemistry; 1999 Oct; 38(41):13654-60. PubMed ID: 10521272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic motion of helix A in the amino-terminal domain of calmodulin is stabilized upon calcium activation.
    Chen B; Mayer MU; Markillie LM; Stenoien DL; Squier TC
    Biochemistry; 2005 Jan; 44(3):905-14. PubMed ID: 15654746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Progressive decline in the ability of calmodulin isolated from aged brain to activate the plasma membrane Ca-ATPase.
    Gao J; Yin D; Yao Y; Williams TD; Squier TC
    Biochemistry; 1998 Jun; 37(26):9536-48. PubMed ID: 9649337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resolution of structural changes associated with calcium activation of calmodulin using frequency domain fluorescence spectroscopy.
    Yao Y; Schöneich C; Squier TC
    Biochemistry; 1994 Jun; 33(25):7797-810. PubMed ID: 8011644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidatively modified calmodulin binds to the plasma membrane Ca-ATPase in a nonproductive and conformationally disordered complex.
    Gao J; Yao Y; Squier TC
    Biophys J; 2001 Apr; 80(4):1791-801. PubMed ID: 11259292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loss of conformational stability in calmodulin upon methionine oxidation.
    Gao J; Yin DH; Yao Y; Sun H; Qin Z; Schöneich C; Williams TD; Squier TC
    Biophys J; 1998 Mar; 74(3):1115-34. PubMed ID: 9512014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Phe-92 in the Ca(2+)-induced conformational transition in the C-terminal domain of calmodulin.
    Meyer DF; Mabuchi Y; Grabarek Z
    J Biol Chem; 1996 May; 271(19):11284-90. PubMed ID: 8626680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational substates of calmodulin revealed by single-pair fluorescence resonance energy transfer: influence of solution conditions and oxidative modification.
    Slaughter BD; Unruh JR; Allen MW; Bieber Urbauer RJ; Johnson CK
    Biochemistry; 2005 Mar; 44(10):3694-707. PubMed ID: 15751946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An extended conformation of calmodulin induces interactions between the structural domains of adenylyl cyclase from Bacillus anthracis to promote catalysis.
    Drum CL; Yan SZ; Sarac R; Mabuchi Y; Beckingham K; Bohm A; Grabarek Z; Tang WJ
    J Biol Chem; 2000 Nov; 275(46):36334-40. PubMed ID: 10926933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different conformational switches underlie the calmodulin-dependent modulation of calcium pumps and channels.
    Boschek CB; Sun H; Bigelow DJ; Squier TC
    Biochemistry; 2008 Feb; 47(6):1640-51. PubMed ID: 18201104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mediating molecular recognition by methionine oxidation: conformational switching by oxidation of methionine in the carboxyl-terminal domain of calmodulin.
    Anbanandam A; Bieber Urbauer RJ; Bartlett RK; Smallwood HS; Squier TC; Urbauer JL
    Biochemistry; 2005 Jul; 44(27):9486-96. PubMed ID: 15996103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2008 Nov; 47(46):12006-17. PubMed ID: 18947187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.