BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11583272)

  • 1. Theoretical, experimental, and computational aspects of optical property determination of turbid media by using frequency-domain laser infrared photothermal radiometry.
    Nicolaides L; Chen Y; Mandelis A; Vitkin IA
    J Opt Soc Am A Opt Image Sci Vis; 2001 Oct; 18(10):2548-56. PubMed ID: 11583272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A; Feng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of optical properties of turbid media using pulsed photothermal radiometry.
    Prahl SA; Vitkin IA; Bruggemann U; Wilson BC; Anderson RR
    Phys Med Biol; 1992 Jun; 37(6):1203-17. PubMed ID: 1626021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of layered scattering materials by pulsed photothermal radiometry: application to photon propagation in tissue.
    Vitkin IA; Wilson BC; Anderson RR
    Appl Opt; 1995 Jun; 34(16):2973-82. PubMed ID: 21052451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence.
    Nicolaides L; Feng C; Mandelis A; Abrams SH
    Appl Opt; 2002 Feb; 41(4):768-77. PubMed ID: 11993925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal determination of optical coefficients of tissue phantoms using an optical fibre probe.
    Laufer JG; Beard PC; Walker SP; Mills TN
    Phys Med Biol; 2001 Oct; 46(10):2515-30. PubMed ID: 11686272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical property measurements of turbid media in a small-volume cuvette with frequency-domain photon migration.
    Coquoz O; Svaasand LO; Tromberg BJ
    Appl Opt; 2001 Dec; 40(34):6281-91. PubMed ID: 18364934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust multiparameter method of evaluating the optical and thermal properties of a layered tissue structure using photothermal radiometry.
    Matvienko A; Mandelis A; Abrams S
    Appl Opt; 2009 Jun; 48(17):3192-203. PubMed ID: 19516364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsed photothermal radiometry as a method for investigating blood vessel-like structures.
    Schmitz CH; Oberheide U; Lohmann S; Lubatschowski H; Ertmer W
    J Biomed Opt; 2001 Apr; 6(2):214-23. PubMed ID: 11375732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser photothermoacoustic heterodyned lock-in depth profilometry in turbid tissue phantoms.
    Fan Y; Mandelis A; Spirou G; Vitkin IA; Whelan WM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051908. PubMed ID: 16383646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of pulsed photothermal radiometry, optical coherence tomography and ultrasound for melanoma thickness measurement in PDMS tissue phantoms.
    Wang T; Mallidi S; Qiu J; Ma LL; Paranjape AS; Sun J; Kuranov RV; Johnston KP; Milner TE
    J Biophotonics; 2011 May; 4(5):335-44. PubMed ID: 20954204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Frequency domain photothermoacoustic signal amplitude dependence on the optical properties of water: turbid polyvinyl chloride-plastisol system.
    Spirou GM; Mandelis A; Vitkin IA; Whelan WM
    Appl Opt; 2008 May; 47(14):2564-73. PubMed ID: 18470251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-precision frequency-domain measurements of the optical properties of turbid media.
    Gerken M; Faris GW
    Opt Lett; 1999 Jul; 24(14):930-2. PubMed ID: 18073899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative photothermal analysis and multispectral imaging of dental structures: insights into optical and thermal properties of carious and healthy teeth.
    Shokouhi EB; Thapa D; Welch R; Sivagurunathan K; Mandelis A
    J Biomed Opt; 2024 Jan; 29(1):015003. PubMed ID: 38283937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the properties of two-layer turbid media with frequency-domain diffuse reflectance.
    Pham TH; Spott T; Svaasand LO; Tromberg BJ
    Appl Opt; 2000 Sep; 39(25):4733-45. PubMed ID: 18350066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Depth determination of chromophores in human skin by pulsed photothermal radiometry.
    Milner TE; Smithies DJ; Goodman DM; Lau A; Nelson JS
    Appl Opt; 1996 Jul; 35(19):3379-85. PubMed ID: 21102725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of the optical and thermal properties of biliary calculi using pulsed photothermal radiometry.
    Long FH; Nishioka NS; Deutsch TF
    Lasers Surg Med; 1987; 7(6):461-6. PubMed ID: 3431321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New contactless method for thermal diffusivity measurements using modulated photothermal radiometry.
    Pham Tu Quoc S; Cheymol G; Semerok A
    Rev Sci Instrum; 2014 May; 85(5):054903. PubMed ID: 24880399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pulsed photothermal radiometry in optically transparent media containing discrete optical absorbers.
    Vitkin IA; Wilson BC; Anderson RR; Prahl SA
    Phys Med Biol; 1994 Oct; 39(10):1721-44. PubMed ID: 15551541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hand-held pulsed photothermal radiometry system to estimate epidermal temperature rise during laser therapy.
    Jung B; Kim CS; Choi B; Nelson JS
    Skin Res Technol; 2006 Nov; 12(4):292-7. PubMed ID: 17026662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.