These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11583545)

  • 21. Self-assembly of single-walled carbon nanotubes into multiwalled carbon nanotubes in water: molecular dynamics simulations.
    Zou J; Ji B; Feng XQ; Gao H
    Nano Lett; 2006 Mar; 6(3):430-4. PubMed ID: 16522036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chirality dependence of quantum thermal transport in carbon nanotubes at low temperatures: a first-principles study.
    Hata T; Kawai H; Ohto T; Yamashita K
    J Chem Phys; 2013 Jul; 139(4):044711. PubMed ID: 23902007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes.
    Zhang L; Tu X; Welsher K; Wang X; Zheng M; Dai H
    J Am Chem Soc; 2009 Feb; 131(7):2454-5. PubMed ID: 19193007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Immunologically Modified Nanosystem Based on Noncovalent Binding Between Single-Walled Carbon Nanotubes and Glycated Chitosan.
    Saha LC; Nag OK; Doughty A; Liu H; Chen WR
    Technol Cancer Res Treat; 2018 Jan; 17():1533033818802313. PubMed ID: 30261832
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Density functional study of the 13C NMR chemical shifts in small-to-medium-diameter infinite single-walled carbon nanotubes.
    Zurek E; Pickard CJ; Walczak B; Autschbach J
    J Phys Chem A; 2006 Nov; 110(43):11995-2004. PubMed ID: 17064188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical signatures of the Aharonov-Bohm phase in single-walled carbon nanotubes.
    Zaric S; Ostojic GN; Kono J; Shaver J; Moore VC; Strano MS; Hauge RH; Smalley RE; Wei X
    Science; 2004 May; 304(5674):1129-31. PubMed ID: 15155942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Length-dependent plasmon resonance in single-walled carbon nanotubes.
    Morimoto T; Joung SK; Saito T; Futaba DN; Hata K; Okazaki T
    ACS Nano; 2014 Oct; 8(10):9897-904. PubMed ID: 25283493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic structures and energetics of [5,5] and [9,0] single-walled carbon nanotubes.
    Cioslowski J; Rao N; Moncrieff D
    J Am Chem Soc; 2002 Jul; 124(28):8485-9. PubMed ID: 12105930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy.
    Ago H; Imamura S; Okazaki T; Saito T; Yumura M; Tsuji M
    J Phys Chem B; 2005 May; 109(20):10035-41. PubMed ID: 16852214
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbon chains and the (5,5) single-walled nanotube: structure and energetics versus length.
    Rodriguez KR; Williams SM; Young MA; Teeters-Kennedy S; Heer JM; Coe JV
    J Chem Phys; 2006 Nov; 125(19):194716. PubMed ID: 17129159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Raman-active modes in homogeneous and inhomogeneous bundles of single-walled carbon nanotubes.
    Sbai K; Rahmani A; Chadli H; Sauvajol JL
    J Phys Condens Matter; 2009 Jan; 21(4):045302. PubMed ID: 21715798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of quantum partial charges on the structure and dynamics of water in single-walled carbon nanotubes.
    Won CY; Joseph S; Aluru NR
    J Chem Phys; 2006 Sep; 125(11):114701. PubMed ID: 16999495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Double-walled carbon nanotubes: challenges and opportunities.
    Shen C; Brozena AH; Wang Y
    Nanoscale; 2011 Feb; 3(2):503-18. PubMed ID: 21042608
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Excitonic effects and optical spectra of single-walled carbon nanotubes.
    Spataru CD; Ismail-Beigi S; Benedict LX; Louie SG
    Phys Rev Lett; 2004 Feb; 92(7):077402. PubMed ID: 14995885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Many-particle excitations in non-covalently doped single-walled carbon nanotubes.
    Eremin TV; Obraztsov PA; Velikanov VA; Shubina TV; Obraztsova ED
    Sci Rep; 2019 Oct; 9(1):14985. PubMed ID: 31628351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection.
    Li X; Tu X; Zaric S; Welsher K; Seo WS; Zhao W; Dai H
    J Am Chem Soc; 2007 Dec; 129(51):15770-1. PubMed ID: 18052285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective optical property modification of double-walled carbon nanotubes by fluorination.
    Hayashi T; Shimamoto D; Kim YA; Muramatsu H; Okino F; Touhara H; Shimada T; Miyauchi Y; Maruyama S; Terrones M; Dresselhaus MS; Endo M
    ACS Nano; 2008 Mar; 2(3):485-8. PubMed ID: 19206574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The excitonic effects in single and double-walled boron nitride nanotubes.
    Wang S; Li Y; Yip J; Wang J
    J Chem Phys; 2014 Jun; 140(24):244701. PubMed ID: 24985662
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.