These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 11583833)
1. Resonance energy transfer study of peptide-lipid complexes. Gorbenko G; Saito H; Molotkovsky J; Tanaka M; Egashira M; Nakano M; Handa T Biophys Chem; 2001 Sep; 92(3):155-68. PubMed ID: 11583833 [TBL] [Abstract][Full Text] [Related]
2. Effect of cholesterol on bilayer location of the class A peptide Ac-18A-NH2 as revealed by fluorescence resonance energy transfer. Gorbenko G; Handa T; Saito H; Molotkovsky J; Tanaka M; Egashira M; Nakano M Eur Biophys J; 2003 Dec; 32(8):703-9. PubMed ID: 12856165 [TBL] [Abstract][Full Text] [Related]
3. Resonance energy transfer study of lysozyme-lipid interactions. Gorbenko GP; Ioffe VM; Molotkovsky JG; Kinnunen PK Biochim Biophys Acta; 2008 May; 1778(5):1213-21. PubMed ID: 17963687 [TBL] [Abstract][Full Text] [Related]
4. Effect of end group blockage on the properties of a class A amphipathic helical peptide. Venkatachalapathi YV; Phillips MC; Epand RM; Epand RF; Tytler EM; Segrest JP; Anantharamaiah GM Proteins; 1993 Apr; 15(4):349-59. PubMed ID: 8460106 [TBL] [Abstract][Full Text] [Related]
5. Resonance energy transfer study of hemoglobin and cytochrome c complexes with lipids. Gorbenko GP Biochim Biophys Acta; 1998 Nov; 1409(1):12-24. PubMed ID: 9804870 [TBL] [Abstract][Full Text] [Related]
6. Location of novel benzanthrone dyes in model membranes as revealed by resonance energy transfer. Zhytniakivska O; Trusova V; Gorbenko G; Kirilova E; Kalnina I; Kirilov G; Molotkovsky J; Tulkki J; Kinnunen P J Fluoresc; 2014 May; 24(3):899-907. PubMed ID: 24596055 [TBL] [Abstract][Full Text] [Related]
7. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886 [TBL] [Abstract][Full Text] [Related]
8. Determining the membrane topology of peptides by fluorescence quenching. Wimley WC; White SH Biochemistry; 2000 Jan; 39(1):161-70. PubMed ID: 10625491 [TBL] [Abstract][Full Text] [Related]
9. Cholesterol modulates interaction between an amphipathic class A peptide, Ac-18A-NH2, and phosphatidylcholine bilayers. Egashira M; Gorbenko G; Tanaka M; Saito H; Molotkovsky J; Nakano M; Handa T Biochemistry; 2002 Mar; 41(12):4165-72. PubMed ID: 11900560 [TBL] [Abstract][Full Text] [Related]
10. Effect of magainin, class L, and class A amphipathic peptides on fatty acid spin labels in lipid bilayers. Boggs JM; Jo E; Polozov IV; Epand RF; Anantharamaiah GM; Blazyk J; Epand RM Biochim Biophys Acta; 2001 Mar; 1511(1):28-41. PubMed ID: 11248202 [TBL] [Abstract][Full Text] [Related]
11. Designing transmembrane alpha-helices that insert spontaneously. Wimley WC; White SH Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993 [TBL] [Abstract][Full Text] [Related]
12. Cytochrome c location in phosphatidylcholine/cardiolipin model membranes: resonance energy transfer study. Gorbenko GP; Domanov YA Biophys Chem; 2003 Mar; 103(3):239-49. PubMed ID: 12727286 [TBL] [Abstract][Full Text] [Related]
13. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes. Tiriveedhi V; Butko P Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552 [TBL] [Abstract][Full Text] [Related]
14. Effect of cholesterol on binding of amphipathic helices to lipid emulsions. Ozawa M; Handa T; Nakano M J Phys Chem B; 2012 Jan; 116(1):476-82. PubMed ID: 22148179 [TBL] [Abstract][Full Text] [Related]
15. Interaction of a pseudosubstrate peptide of protein kinase C and its myristoylated form with lipid vesicles: only the myristoylated form translocates into the lipid bilayer. Harishchandran A; Nagaraj R Biochim Biophys Acta; 2005 Jul; 1713(2):73-82. PubMed ID: 15990084 [TBL] [Abstract][Full Text] [Related]
16. Roles of peptide-peptide charge interaction and lipid phase separation in helix-helix association in lipid bilayer. Shigematsu D; Matsutani M; Furuya T; Kiyota T; Lee S; Sugihara G; Yamashita S Biochim Biophys Acta; 2002 Aug; 1564(1):271-80. PubMed ID: 12101022 [TBL] [Abstract][Full Text] [Related]
17. Contribution of the hydrophobicity gradient of an amphipathic peptide to its mode of association with lipids. Pérez-Méndez O; Vanloo B; Decout A; Goethals M; Peelman F; Vandekerckhove J; Brasseur R; Rosseneu M Eur J Biochem; 1998 Sep; 256(3):570-9. PubMed ID: 9780233 [TBL] [Abstract][Full Text] [Related]
18. Membrane binding and translocation of cell-penetrating peptides. Thorén PE; Persson D; Esbjörner EK; Goksör M; Lincoln P; Nordén B Biochemistry; 2004 Mar; 43(12):3471-89. PubMed ID: 15035618 [TBL] [Abstract][Full Text] [Related]
19. Tryptophan rotamer distributions in amphipathic peptides at a lipid surface. Clayton AH; Sawyer WH Biophys J; 1999 Jun; 76(6):3235-42. PubMed ID: 10354448 [TBL] [Abstract][Full Text] [Related]
20. A fluorescence resonance energy transfer approach for monitoring protein-mediated glycolipid transfer between vesicle membranes. Mattjus P; Molotkovsky JG; Smaby JM; Brown RE Anal Biochem; 1999 Mar; 268(2):297-304. PubMed ID: 10075820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]