BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 11583835)

  • 1. Molecular dynamics simulation and essential dynamics study of mutated plastocyanin: structural, dynamical and functional effects of a disulfide bridge insertion at the protein surface.
    Arcangeli C; Bizzarri AR; Cannistraro S
    Biophys Chem; 2001 Sep; 92(3):183-99. PubMed ID: 11583835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MD simulation of a plastocyanin mutant adsorbed onto a gold surface.
    Bizzarri AR; Costantini G; Cannistraro S
    Biophys Chem; 2003 Nov; 106(2):111-23. PubMed ID: 14556901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concerted motions in copper plastocyanin and azurin: an essential dynamics study.
    Arcangeli C; Bizzarri AR; Cannistraro S
    Biophys Chem; 2001 Mar; 90(1):45-56. PubMed ID: 11321674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined atomic force microscopy and molecular dynamics simulation study on a plastocyanin mutant chemisorbed on a gold surface.
    Bizzarri AR; Bonanni B; Costantini G; Cannistraro S
    Chemphyschem; 2003 Nov; 4(11):1189-95. PubMed ID: 14652997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal stability of wild type and disulfide bridge containing mutant of poplar plastocyanin.
    Guzzi R; Andolfi L; Cannistraro S; Verbeet MP; Canters GW; Sportelli L
    Biophys Chem; 2004 Dec; 112(1):35-43. PubMed ID: 15501574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of reduced flexibility in disulfide bridge-depleted azurin: a molecular dynamics simulation study.
    Rizzuti B; Sportelli L; Guzzi R
    Biophys Chem; 2001 Dec; 94(1-2):107-20. PubMed ID: 11744195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A poplar plastocyanin mutant suitable for adsorption onto gold surface via disulfide bridge.
    Andolfi L; Cannistraro S; Canters GW; Facci P; Ficca AG; Van Amsterdam IM; Verbeet MP
    Arch Biochem Biophys; 2002 Mar; 399(1):81-8. PubMed ID: 11883906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The 1.6 A resolution crystal structure of a mutant plastocyanin bearing a 21-25 engineered disulfide bridge.
    Milani M; Andolfi L; Cannistraro S; Verbeet MP; Bolognesi M
    Acta Crystallogr D Biol Crystallogr; 2001 Nov; 57(Pt 11):1735-8. PubMed ID: 11679761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of wild-type and mutant plastocyanins from a higher plant, Silene.
    Sugawara H; Inoue T; Li C; Gotowda M; Hibino T; Takabe T; Kai Y
    J Biochem; 1999 May; 125(5):899-903. PubMed ID: 10220581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term molecular dynamics simulation of copper azurin: structure, dynamics and functionality.
    Arcangeli C; Bizzarri AR; Cannistraro S
    Biophys Chem; 1999 Apr; 78(3):247-57. PubMed ID: 17030312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic analysis and Brownian dynamics simulation of the association of plastocyanin and cytochrome f.
    De Rienzo F; Gabdoulline RR; Menziani MC; De Benedetti PG; Wade RC
    Biophys J; 2001 Dec; 81(6):3090-104. PubMed ID: 11720977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classical molecular dynamics simulation of the photoinduced electron transfer dynamics of plastocyanin.
    Ungar LW; Scherer NF; Voth GA
    Biophys J; 1997 Jan; 72(1):5-17. PubMed ID: 8994588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular dynamics simulation study of the solvent isotope effect on copper plastocyanin.
    Guzzi R; Arcangeli C; Bizzarri AR
    Biophys Chem; 1999 Nov; 82(1):9-22. PubMed ID: 17030337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term molecular dynamics simulation of copper plastocyanin in water.
    Ciocchetti A; Bizzarri AR; Cannistraro S
    Biophys Chem; 1997 Dec; 69(2-3):185-98. PubMed ID: 17029927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics of amicyanin reveals a conserved dynamical core for blue copper proteins.
    Rizzuti B; Sportelli L; Guzzi R
    Proteins; 2009 Mar; 74(4):961-71. PubMed ID: 18767164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution solution structure of reduced French bean plastocyanin and comparison with the crystal structure of poplar plastocyanin.
    Moore JM; Lepre CA; Gippert GP; Chazin WJ; Case DA; Wright PE
    J Mol Biol; 1991 Sep; 221(2):533-55. PubMed ID: 1920431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited state charge-transfer dynamics study of poplar plastocyanin by ultrafast pump-probe spectroscopy and molecular dynamics simulation.
    Cimei T; Rita Bizzarri A; Cerullo G; De Silvestri S; Cannistraro S
    Biophys Chem; 2003 Dec; 106(3):221-31. PubMed ID: 14556894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H-bonding maintains the active site of type 1 copper proteins: site-directed mutagenesis of Asn38 in poplar plastocyanin.
    Dong S; Ybe JA; Hecht MH; Spiro TG
    Biochemistry; 1999 Mar; 38(11):3379-85. PubMed ID: 10079082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backbone dynamics of plastocyanin in both oxidation states. Solution structure of the reduced form and comparison with the oxidized state.
    Bertini I; Bryant DA; Ciurli S; Dikiy A; Fernández CO; Luchinat C; Safarov N; Vila AJ; Zhao J
    J Biol Chem; 2001 Dec; 276(50):47217-26. PubMed ID: 11509552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The specificity in the interaction between cytochrome f and plastocyanin from the cyanobacterium Nostoc sp. PCC 7119 is mainly determined by the copper protein.
    Albarrán C; Navarro JA; De la Rosa MA; Hervás M
    Biochemistry; 2007 Jan; 46(4):997-1003. PubMed ID: 17240983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.