BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 11583835)

  • 21. Computational simulation of the docking of Prochlorothrix hollandica plastocyanin to potosystem I: modeling the electron transfer complex.
    Myshkin E; Leontis NB; Bullerjahn GS
    Biophys J; 2002 Jun; 82(6):3305-13. PubMed ID: 12023253
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ligand-to-metal charge-transfer dynamics in a blue copper protein plastocyanin: a molecular dynamics study.
    Ando K
    J Phys Chem B; 2008 Jan; 112(2):250-6. PubMed ID: 18047310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-frequency vibrational modes in proteins: a neutron scattering investigation.
    Bizzarri AR; Paciaroni A; Arcangeli C; Cannistraro S
    Eur Biophys J; 2001 Oct; 30(6):443-9. PubMed ID: 11718297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c6 and plastocyanin in Chlamydomonas reinhardtii.
    Haddadian EJ; Gross EL
    Biophys J; 2006 Jan; 90(2):566-77. PubMed ID: 16239335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct simulation of plastocyanin and cytochrome f interactions in solution.
    Kovalenko IB; Abaturova AM; Gromov PA; Ustinin DM; Grachev EA; Riznichenko GY; Rubin AB
    Phys Biol; 2006 Jun; 3(2):121-9. PubMed ID: 16829698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topological and dynamical properties of Azurin anchored to a gold substrate as investigated by molecular dynamics simulation.
    Bizzarri AR
    Biophys Chem; 2006 Aug; 122(3):206-14. PubMed ID: 16631301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Brownian dynamics study of the interaction of Phormidium laminosum plastocyanin with Phormidium laminosum cytochrome f.
    Gross EL
    Biophys J; 2004 Sep; 87(3):2043-59. PubMed ID: 15345580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatic strain and concerted motions in the transient complex between plastocyanin and cytochrome f from the cyanobacterium Phormidium laminosum.
    Díaz-Moreno I; Muñoz-López FJ; Frutos-Beltrán E; De la Rosa MA; Díaz-Quintana A
    Bioelectrochemistry; 2009 Nov; 77(1):43-52. PubMed ID: 19616485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of disulfide bonds in modulating internal motions of proteins to tune their function: molecular dynamics simulation of scorpion toxin Lqh III.
    Moghaddam ME; Naderi-Manesh H
    Proteins; 2006 Apr; 63(1):188-96. PubMed ID: 16400645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of mutations in plastocyanin on the kinetics of the protein rearrangement gating the electron-transfer reaction with zinc cytochrome c. Analysis of the rearrangement pathway.
    Crnogorac MM; Shen C; Young S; Hansson O; Kostić NM
    Biochemistry; 1996 Dec; 35(51):16465-74. PubMed ID: 8987979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron transfer to photosystem 1 from spinach plastocyanin mutated in the small acidic patch: ionic strength dependence of kinetics and comparison of mechanistic models.
    Olesen K; Ejdebäck M; Crnogorac MM; Kostić NM; Hansson O
    Biochemistry; 1999 Dec; 38(50):16695-705. PubMed ID: 10600133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical descriptors for the quantitative rationalisation of plastocyanin mutant functional propertiess.
    De Rienzo F; Grant GH; Menziani MC
    J Comput Aided Mol Des; 2002 Jul; 16(7):501-9. PubMed ID: 12510882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sequence replacements in the central beta-turn of plastocyanin.
    Ybe JA; Hecht MH
    Protein Sci; 1996 May; 5(5):814-24. PubMed ID: 8732753
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the physiologically equivalent proteins cytochrome c6 and plastocyanin on the basis of their electrostatic potentials. Tryptophan 63 in cytochrome c6 may be isofunctional with tyrosine 83 in plastocyanin.
    Ullmann GM; Hauswald M; Jensen A; Kostić NM; Knapp EW
    Biochemistry; 1997 Dec; 36(51):16187-96. PubMed ID: 9405052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glassy protein dynamics and gigantic solvent reorganization energy of plastocyanin.
    LeBard DN; Matyushov DV
    J Phys Chem B; 2008 Apr; 112(16):5218-27. PubMed ID: 18341321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of oxidized poplar plastocyanin at 1.6 A resolution.
    Guss JM; Freeman HC
    J Mol Biol; 1983 Sep; 169(2):521-63. PubMed ID: 6620385
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A QM/MM study of the nature of the entatic state in plastocyanin.
    Hurd CA; Besley NA; Robinson D
    J Comput Chem; 2017 Jun; 38(16):1431-1437. PubMed ID: 27859435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. How the local geometry of the Cu-binding site determines the thermal stability of blue copper proteins.
    Chaboy J; Díaz-Moreno S; Díaz-Moreno I; De la Rosa MA; Díaz-Quintana A
    Chem Biol; 2011 Jan; 18(1):25-31. PubMed ID: 21276936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in the reaction mechanism of electron transfer from plastocyanin to photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 as induced by site-directed mutagenesis of the copper protein.
    De la Cerda B; Navarro JA; Hervás M; De la Rosa MA
    Biochemistry; 1997 Aug; 36(33):10125-30. PubMed ID: 9254609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.