BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 11583845)

  • 1. Sulfophthalimide as major metabolite formed from sulfonated phthalocyanine dyes by the white-rot fungus Bjerkandera adusta.
    Heinfling-Weidtmann A; Reemtsma T; Storm T; Szewzyk U
    FEMS Microbiol Lett; 2001 Sep; 203(2):179-83. PubMed ID: 11583845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concerted chemical and microbial degradation of sulfophthalimides formed from sulfophthalocyanine dyes by white-rot fungi.
    Reemtsma T; Jakobs J
    Environ Sci Technol; 2001 Dec; 35(23):4655-9. PubMed ID: 11770767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of industrial dyes by manganese peroxidases from Bjerkandera adusta and Pleurotus eryngii in a manganese-independent reaction.
    Heinfling A; Martínez MJ; Martínez AT; Bergbauer M; Szewzyk U
    Appl Environ Microbiol; 1998 Aug; 64(8):2788-93. PubMed ID: 9687431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization.
    Rekik H; Zaraî Jaouadi N; Bouacem K; Zenati B; Kourdali S; Badis A; Annane R; Bouanane-Darenfed A; Bejar S; Jaouadi B
    Int J Biol Macromol; 2019 Mar; 125():514-525. PubMed ID: 30528991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105.
    Sodaneath H; Lee JI; Yang SO; Jung H; Ryu HW; Cho KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Sep; 52(11):1099-1111. PubMed ID: 28763254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EPR and LC-MS studies on the mechanism of industrial dye decolorization by versatile peroxidase from Bjerkandera adusta.
    Baratto MC; Juarez-Moreno K; Pogni R; Basosi R; Vazquez-Duhalt R
    Environ Sci Pollut Res Int; 2015 Jun; 22(11):8683-92. PubMed ID: 25567062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anthraquinone dyes decolorization capacity of anamorphic Bjerkandera adusta CCBAS 930 strain and its HRP-like negative mutants.
    Korniłłowicz-Kowalska T; Rybczyńska K
    World J Microbiol Biotechnol; 2014 Jun; 30(6):1725-36. PubMed ID: 24415463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of textile dyes by white-rot fungus Trametes versicolor.
    Keharia H; Madamwar D
    Appl Biochem Biotechnol; 2002; 102-103(1-6):99-108. PubMed ID: 12396114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.
    Levin L; Papinutti L; Forchiassin F
    Bioresour Technol; 2004 Sep; 94(2):169-76. PubMed ID: 15158509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decolorization of mixtures of different reactive textile dyes by the white-rot basidiomycete Phanerochaete sordida and inhibitory effect of polyvinyl alcohol.
    Harazono K; Nakamura K
    Chemosphere; 2005 Mar; 59(1):63-8. PubMed ID: 15698645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent.
    Shin KS
    J Microbiol; 2004 Mar; 42(1):37-41. PubMed ID: 15357290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of textile indigo dye by ligninolytic fungi.
    Balan DS; Monteiro RT
    J Biotechnol; 2001 Aug; 89(2-3):141-5. PubMed ID: 11500207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodecolorization and biodegradation of reactive Levafix Blue E-RA granulate dye by the white rot fungus Irpex lacteus.
    Kalpana D; Velmurugan N; Shim JH; Oh BT; Senthil K; Lee YS
    J Environ Manage; 2012 Nov; 111():142-9. PubMed ID: 22846889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and selection of novel basidiomycetes for decolorization of recalcitrant dyes.
    Barrasa JM; Martínez AT; Martínez MJ
    Folia Microbiol (Praha); 2009; 54(1):59-66. PubMed ID: 19330546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of sulfophthalimide and some of its derivatives by liquid chromatography-electrospray ionization tandem mass spectrometry.
    Reemtsma T
    J Chromatogr A; 2001 Jun; 919(2):289-97. PubMed ID: 11442034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions.
    Libra JA; Borchert M; Banit S
    Biotechnol Bioeng; 2003 Jun; 82(6):736-44. PubMed ID: 12673774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera adusta strain CX-9.
    Bouacem K; Rekik H; Jaouadi NZ; Zenati B; Kourdali S; El Hattab M; Badis A; Annane R; Bejar S; Hacene H; Bouanane-Darenfed A; Jaouadi B
    Int J Biol Macromol; 2018 Jan; 106():636-646. PubMed ID: 28813685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Mn-dependent peroxidase in dye decolorization by static and agitated cultures of Irpex lacteus.
    Svobodová K; Erbanová P; Sklenár J; Novotný C
    Folia Microbiol (Praha); 2006; 51(6):573-8. PubMed ID: 17455794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete decolorization of the anthraquinone dye Reactive blue 5 by the concerted action of two peroxidases from Thanatephorus cucumeris Dec 1.
    Sugano Y; Matsushima Y; Shoda M
    Appl Microbiol Biotechnol; 2006 Dec; 73(4):862-71. PubMed ID: 16944133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and partial characterization of lignin peroxidase from Acinetobacter calcoaceticus NCIM 2890 and its application in decolorization of textile dyes.
    Ghodake GS; Kalme SD; Jadhav JP; Govindwar SP
    Appl Biochem Biotechnol; 2009 Jan; 152(1):6-14. PubMed ID: 18506630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.