BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11583994)

  • 1. Population analysis of subsaturated 172-12 nucleosomal arrays by atomic force microscopy detects nonrandom behavior that is favored by histone acetylation and short repeat length.
    Bash RC; Yodh J; Lyubchenko Y; Woodbury N; Lohr D
    J Biol Chem; 2001 Dec; 276(51):48362-70. PubMed ID: 11583994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for nonrandom behavior in 208-12 subsaturated nucleosomal array populations analyzed by AFM.
    Yodh JG; Lyubchenko YL; Shlyakhtenko LS; Woodbury N; Lohr D
    Biochemistry; 1999 Nov; 38(48):15756-63. PubMed ID: 10625441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical thermodynamic model applied to experimental AFM population and location data is able to quantify DNA-histone binding strength and internucleosomal interaction differences between acetylated and unacetylated nucleosomal arrays.
    Solis FJ; Bash R; Yodh J; Lindsay SM; Lohr D
    Biophys J; 2004 Nov; 87(5):3372-87. PubMed ID: 15347582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleosomal arrays can be salt-reconstituted on a single-copy MMTV promoter DNA template: their properties differ in several ways from those of comparable 5S concatameric arrays.
    Bash R; Wang H; Yodh J; Hager G; Lindsay SM; Lohr D
    Biochemistry; 2003 Apr; 42(16):4681-90. PubMed ID: 12705831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping nucleosome locations on the 208-12 by AFM provides clear evidence for cooperativity in array occupation.
    Yodh JG; Woodbury N; Shlyakhtenko LS; Lyubchenko YL; Lohr D
    Biochemistry; 2002 Mar; 41(11):3565-74. PubMed ID: 11888272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of nucleosomes in acetylated mouse mammary tumor virus versus 5S arrays.
    Solis FJ; Bash R; Wang H; Yodh J; Lindsay SA; Lohr D
    Biochemistry; 2007 May; 46(19):5623-34. PubMed ID: 17444617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic force microscopy sees nucleosome positioning and histone H1-induced compaction in reconstituted chromatin.
    Sato MH; Ura K; Hohmura KI; Tokumasu F; Yoshimura SH; Hanaoka F; Takeyasu K
    FEBS Lett; 1999 Jun; 452(3):267-71. PubMed ID: 10386604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using atomic force microscopy to study chromatin structure and nucleosome remodeling.
    Lohr D; Bash R; Wang H; Yodh J; Lindsay S
    Methods; 2007 Mar; 41(3):333-41. PubMed ID: 17309844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array.
    Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA.
    Rogge RA; Kalashnikova AA; Muthurajan UM; Porter-Goff ME; Luger K; Hansen JC
    J Vis Exp; 2013 Sep; (79):. PubMed ID: 24056546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-scale analyses of the chromatin decompaction induced by histone acetylation.
    Hizume K; Araki S; Hata K; Prieto E; Kundu TK; Yoshikawa K; Takeyasu K
    Arch Histol Cytol; 2010; 73(3):149-63. PubMed ID: 22572182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy.
    Suzuki Y; Higuchi Y; Hizume K; Yokokawa M; Yoshimura SH; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2010 May; 110(6):682-8. PubMed ID: 20236766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linker histone tails and N-tails of histone H3 are redundant: scanning force microscopy studies of reconstituted fibers.
    Leuba SH; Bustamante C; van Holde K; Zlatanova J
    Biophys J; 1998 Jun; 74(6):2830-9. PubMed ID: 9635737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly and structural properties of subsaturated chromatin arrays.
    Hansen JC; Lohr D
    J Biol Chem; 1993 Mar; 268(8):5840-8. PubMed ID: 8449950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA.
    Krajewski WA; Becker PB
    Proc Natl Acad Sci U S A; 1998 Feb; 95(4):1540-5. PubMed ID: 9465051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure.
    Routh A; Sandin S; Rhodes D
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8872-7. PubMed ID: 18583476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization of linker histone in chromatosomes by cryo-atomic force microscopy.
    Sheng S; Czajkowsky DM; Shao Z
    Biophys J; 2006 Aug; 91(4):L35-7. PubMed ID: 16782797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of telomeric nucleosomes: atomic force microscopy imaging and theoretical modeling.
    Mechelli R; Anselmi C; Cacchione S; De Santis P; Savino M
    FEBS Lett; 2004 May; 566(1-3):131-5. PubMed ID: 15147882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organisation of nucleosomal arrays reconstituted with repetitive African green monkey alpha-satellite DNA as analysed by atomic force microscopy.
    Bussiek M; Müller G; Waldeck W; Diekmann S; Langowski J
    Eur Biophys J; 2007 Dec; 37(1):81-93. PubMed ID: 17503032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin.
    Melters DP; Dalal Y
    J Mol Biol; 2021 Mar; 433(6):166720. PubMed ID: 33221335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.