These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 11584000)

  • 1. Purification and characterization of a Bacillus subtilis 168 nuclease, YokF, involved in chromosomal DNA degradation and cell death caused by thermal shock treatments.
    Sakamoto JJ; Sasaki M; Tsuchido T
    J Biol Chem; 2001 Dec; 276(50):47046-51. PubMed ID: 11584000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation, characterization, and activation of the magnesium dependent endodeoxyribonuclease from Bacillus subtilis.
    Burke WF; Spizizen J
    Biochemistry; 1977 Feb; 16(3):403-10. PubMed ID: 13815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation in Bacillus subtilis: involvement of the 17-kilodalton DNA-entry nuclease and the competence-specific 18-kilodalton protein.
    Vosman B; Kuiken G; Kooistra J; Venema G
    J Bacteriol; 1988 Aug; 170(8):3703-10. PubMed ID: 2841296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning, sequencing, and expression of Bacillus subtilis genes involved in ATP-dependent nuclease synthesis.
    Kooistra J; Venema G
    J Bacteriol; 1991 Jun; 173(12):3644-55. PubMed ID: 1646786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of the single-strand-specific and guanylic-acid-preferential deoxyribonuclease activity of the extracellular nuclease from Basidiobolus haptosporus.
    Desai NA; Shankar V
    Eur J Biochem; 2000 Aug; 267(16):5123-35. PubMed ID: 10931196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The zinc ion in the HNH motif of the endonuclease domain of colicin E7 is not required for DNA binding but is essential for DNA hydrolysis.
    Ku WY; Liu YW; Hsu YC; Liao CC; Liang PH; Yuan HS; Chak KF
    Nucleic Acids Res; 2002 Apr; 30(7):1670-8. PubMed ID: 11917029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification, characterization and cDNA cloning of an endo-exonuclease from the basidiomycete fungus Armillaria mellea.
    Healy V; Doonan S; McCarthy TV
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):713-20. PubMed ID: 10215611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence for a beta beta alpha-Me-finger nuclease motif to represent the active site of the caspase-activated DNase.
    Scholz SR; Korn C; Bujnicki JM; Gimadutdinow O; Pingoud A; Meiss G
    Biochemistry; 2003 Aug; 42(31):9288-94. PubMed ID: 12899615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and characterization of the yjeA gene, encoding a novel deoxyribonuclease, from Bacillus subtilis.
    Ng KL; Lam CC; Fu Z; Han YF; Tsim KW; Wong WK
    J Biochem; 2007 Nov; 142(5):647-54. PubMed ID: 17878218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning in Escherichia coli of the gene specifying the DNA-entry nuclease of Bacillus subtilis.
    Vosman B; Kooistra J; Olijve J; Venema G
    Gene; 1987; 52(2-3):175-83. PubMed ID: 3038682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bdbDC operon of Bacillus subtilis encodes thiol-disulfide oxidoreductases required for competence development.
    Meima R; Eschevins C; Fillinger S; Bolhuis A; Hamoen LW; Dorenbos R; Quax WJ; van Dijl JM; Provvedi R; Chen I; Dubnau D; Bron S
    J Biol Chem; 2002 Mar; 277(9):6994-7001. PubMed ID: 11744713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of intracellular deoxyribonucleases of Bacillus subtilis by SDS-polyacrylamide gel electrophoresis.
    Rama JM; Pérez Ureña MT; López P; Espinosa M
    Microbios; 1987; 49(200-201):199-212. PubMed ID: 3108630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of a Bacillus subtilis endonuclease specific for apurinic sites in DNA.
    Inoue T; Kada T
    J Biol Chem; 1978 Dec; 253(23):8559-63. PubMed ID: 101548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo and in vitro characterization of the secA gene product of Bacillus subtilis.
    Takamatsu H; Fuma S; Nakamura K; Sadaie Y; Shinkai A; Matsuyama S; Mizushima S; Yamane K
    J Bacteriol; 1992 Jul; 174(13):4308-16. PubMed ID: 1385592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ftsH gene of Bacillus subtilis is involved in major cellular processes such as sporulation, stress adaptation and secretion.
    Deuerling E; Mogk A; Richter C; Purucker M; Schumann W
    Mol Microbiol; 1997 Mar; 23(5):921-33. PubMed ID: 9076729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus subtilis YhcR, a high-molecular-weight, nonspecific endonuclease with a unique domain structure.
    Oussenko IA; Sanchez R; Bechhofer DH
    J Bacteriol; 2004 Aug; 186(16):5376-83. PubMed ID: 15292138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A site-specific endonuclease derived from a mutant Trp repressor with altered DNA-binding specificity.
    Pfau J; Arvidson DN; Youderian P; Pearson LL; Sigman DS
    Biochemistry; 1994 Sep; 33(37):11391-403. PubMed ID: 7727390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two distinct arabinofuranosidases contribute to arabino-oligosaccharide degradation in Bacillus subtilis.
    Inácio JM; Correia IL; de Sá-Nogueira I
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2719-2729. PubMed ID: 18757805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and transcriptional analysis of a cold shock-inducible gene, cspA, in Streptomyces coelicolor A3(2).
    Kormanec J; Sevcíková B
    Mol Gen Genet; 2000 Oct; 264(3):251-6. PubMed ID: 11085264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures.
    Willimsky G; Bang H; Fischer G; Marahiel MA
    J Bacteriol; 1992 Oct; 174(20):6326-35. PubMed ID: 1400185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.