These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 115845)
1. Function of modified nucleosides 7-methylguanosine, ribothymidine, and 2-thiomethyl-N6-(isopentenyl)adenosine in procaryotic transfer ribonucleic acid. Hoburg A; Aschhoff HJ; Kersten H; Manderschied U; Gassen HG J Bacteriol; 1979 Nov; 140(2):408-14. PubMed ID: 115845 [TBL] [Abstract][Full Text] [Related]
2. Modified nucleosides of Bacillus subtilis transfer ribonucleic acids. Vold B J Bacteriol; 1976 Jul; 127(1):258-67. PubMed ID: 819419 [TBL] [Abstract][Full Text] [Related]
3. Post-transcriptional modifications of the anticodon loop region: alterations in isoaccepting species of tRNA's during development in Bacillus subtilis. Vold BS J Bacteriol; 1978 Jul; 135(1):124-32. PubMed ID: 97263 [TBL] [Abstract][Full Text] [Related]
4. Undermethylated transfer ribonucleic acid from a relaxed strain of Bacillus subtilis: construction of the strain and analysis of the transfer ribonucleic acid. Keisel N; Vold B J Bacteriol; 1976 Apr; 126(1):294-9. PubMed ID: 816774 [TBL] [Abstract][Full Text] [Related]
5. Enzymatic methylations: III. Cadaverine-induced conformational changes of E. coli tRNA fMet as evidenced by the availability of a specific adenosine and a specific cytidine residue for methylation. Wildenauer D; Gross HJ; Riesner D Nucleic Acids Res; 1974 Sep; 1(9):1165-82. PubMed ID: 4616226 [TBL] [Abstract][Full Text] [Related]
6. Anticodon domain methylated nucleosides of yeast tRNA(Phe) are significant recognition determinants in the binding of a phage display selected peptide. Mucha P; Szyk A; Rekowski P; Weiss PA; Agris PF Biochemistry; 2001 Nov; 40(47):14191-9. PubMed ID: 11714272 [TBL] [Abstract][Full Text] [Related]
7. Composition and Characterization of tRNA from Methanococcus vannielii. Best AN J Bacteriol; 1978 Jan; 133(1):240-50. PubMed ID: 618840 [TBL] [Abstract][Full Text] [Related]
8. In vivo aminoacylation of transfer ribonucleic acid in Bacillus subtilis and evidence for differential utilization of lysine-isoaccepting transfer ribonucleic acid species. Tockman J; Vold BS J Bacteriol; 1977 Jun; 130(3):1091-7. PubMed ID: 193829 [TBL] [Abstract][Full Text] [Related]
9. Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner. Li J; Esberg B; Curran JF; Björk GR J Mol Biol; 1997 Aug; 271(2):209-21. PubMed ID: 9268653 [TBL] [Abstract][Full Text] [Related]
10. Growth and initiation of protein synthesis in Escherichia coli in the presence of trimethoprim. Harvey RJ J Bacteriol; 1973 Apr; 114(1):309-22. PubMed ID: 4572717 [TBL] [Abstract][Full Text] [Related]
11. Changes in transfer ribonucleic acids of Bacillus subtilis during different growth phases. Singhal RP; Vold B Nucleic Acids Res; 1976 May; 3(5):1249-62. PubMed ID: 821040 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic modification of transfer RNA. Söll D Science; 1971 Jul; 173(3994):293-9. PubMed ID: 4934576 [TBL] [Abstract][Full Text] [Related]
13. Isolation and partial characterization of three Escherichia coli mutants with altered transfer ribonucleic acid methylases. Marinus MG; Morris NR; Söll D; Kwong TC J Bacteriol; 1975 Apr; 122(1):257-65. PubMed ID: 1091626 [TBL] [Abstract][Full Text] [Related]
14. Modification-deficient transfer ribonucleic acids from relaxed control Escherichia coli: structures of the major undermodified phenylalanine and leucine transfer RNAs produced during leucine starvation. Kitchingman GR; Fournier MJ Biochemistry; 1977 May; 16(10):2213-20. PubMed ID: 324516 [TBL] [Abstract][Full Text] [Related]
15. Initiation of protein synthesis without formylation in a mutant of Escherichia coli that grows in the absence of tetrahydrofolate. Baumstark BR; Spremulli LL; RajBhandary UL; Brown GM J Bacteriol; 1977 Jan; 129(1):457-71. PubMed ID: 318648 [TBL] [Abstract][Full Text] [Related]
16. On the biosynthesis of 5-methoxyuridine and uridine-5-oxyacetic acid in specific procaryotic transfer RNAs. Murao K; Ishikura H; Albani M; Kersten H Nucleic Acids Res; 1978 Apr; 5(4):1273-81. PubMed ID: 418384 [TBL] [Abstract][Full Text] [Related]
17. Initiation of protein synthesis in bacillus subtilis in the presence of trimethoprim or aminopterin. Arnold HH Biochim Biophys Acta; 1977 May; 476(1):76-87. PubMed ID: 403950 [TBL] [Abstract][Full Text] [Related]
18. Aminoacyl-tRNA synthetase and U54 methyltransferase recognize conformations of the yeast tRNA(Phe) anticodon and T stem/loop domain. Guenther RH; Bakal RS; Forrest B; Chen Y; Sengupta R; Nawrot B; Sochacka E; Jankowska J; Kraszewski A; Malkiewicz A Biochimie; 1994; 76(12):1143-51. PubMed ID: 7748949 [TBL] [Abstract][Full Text] [Related]
19. Tetrahydrofolate-dependent biosynthesis of ribothymidine in transfer ribonucleic acids of Gram-positive bacteria. Schmidt W; Arnold HH; Kersten H J Bacteriol; 1977 Jan; 129(1):15-21. PubMed ID: 318638 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis of ribothymidine in the transfer RNA of Streptococcus faecalis and Bacillus subtilis. A methylation of RNA involving 5,10-methylenetetrahydrofolate. Delk AS; Romeo JM; Nagle DP; Rabinowitz JC J Biol Chem; 1976 Dec; 251(23):7649-56. PubMed ID: 826533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]