BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 11585853)

  • 1. CFTR: covalent modification of cysteine-substituted channels expressed in Xenopus oocytes shows that activation is due to the opening of channels resident in the plasma membrane.
    Liu X; Smith SS; Sun F; Dawson DC
    J Gen Physiol; 2001 Oct; 118(4):433-46. PubMed ID: 11585853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction.
    Smith SS; Liu X; Zhang ZR; Sun F; Kriewall TE; McCarty NA; Dawson DC
    J Gen Physiol; 2001 Oct; 118(4):407-31. PubMed ID: 11585852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional integrity of the vesicle transporting machinery is required for complete activation of cFTR expressed in xenopus laevis oocytes.
    Weber WM; Segal A; Simaels J; Vankeerberghen A; Cassiman JJ; Van Driessche W
    Pflugers Arch; 2001 Mar; 441(6):850-9. PubMed ID: 11316271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator.
    Zhang ZR; Song B; McCarty NA
    J Biol Chem; 2005 Dec; 280(51):41997-2003. PubMed ID: 16227620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capacitance measurements reveal different pathways for the activation of CFTR.
    Weber WM; Cuppens H; Cassiman JJ; Clauss W; Van Driessche W
    Pflugers Arch; 1999 Sep; 438(4):561-9. PubMed ID: 10519152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes.
    Kunzelmann K; Mall M; Briel M; Hipper A; Nitschke R; Ricken S; Greger R
    Pflugers Arch; 1997 Dec; 435(1):178-81. PubMed ID: 9359918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CFTR: Ligand exchange between a permeant anion ([Au(CN)2]-) and an engineered cysteine (T338C) blocks the pore.
    Serrano JR; Liu X; Borg ER; Alexander CS; Shaw CF; Dawson DC
    Biophys J; 2006 Sep; 91(5):1737-48. PubMed ID: 16766608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes.
    Edwards JC
    J Membr Biol; 2006; 213(1):39-46. PubMed ID: 17347778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different activation mechanisms of cystic fibrosis transmembrane conductance regulator expressed in Xenopus laevis oocytes.
    Webe WM; Segal A; Vankeerberghen A; Cassiman JJ; Van Driessche W
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Oct; 130(3):521-31. PubMed ID: 11913463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Syntaxin 1A inhibits regulated CFTR trafficking in xenopus oocytes.
    Peters KW; Qi J; Watkins SC; Frizzell RA
    Am J Physiol; 1999 Jul; 277(1):C174-80. PubMed ID: 10409120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cAMP stimulation of CFTR-expressing Xenopus oocytes activates a chromanol-inhibitable K+ conductance.
    Mall M; Kunzelmann K; Hipper A; Busch AE; Greger R
    Pflugers Arch; 1996 Jul; 432(3):516-22. PubMed ID: 8766012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
    Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in
    Rauh R; Hoerner C; Korbmacher C
    Am J Physiol Lung Cell Mol Physiol; 2017 Feb; 312(2):L277-L287. PubMed ID: 27941075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by serum- and glucocorticoid-inducible kinase (SGK1).
    Sato JD; Chapline MC; Thibodeau R; Frizzell RA; Stanton BA
    Cell Physiol Biochem; 2007; 20(1-4):91-8. PubMed ID: 17595519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic nucleotide-gated channels. Pore topology studied through the accessibility of reporter cysteines.
    Becchetti A; Gamel K; Torre V
    J Gen Physiol; 1999 Sep; 114(3):377-92. PubMed ID: 10469728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wild type but not deltaF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes.
    Mall M; Hipper A; Greger R; Kunzelmann K
    FEBS Lett; 1996 Feb; 381(1-2):47-52. PubMed ID: 8641437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine substitutions reveal dual functions of the amino-terminal tail in cystic fibrosis transmembrane conductance regulator channel gating.
    Fu J; Kirk KL
    J Biol Chem; 2001 Sep; 276(38):35660-8. PubMed ID: 11468285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genistein improves regulatory interactions between G551D-cystic fibrosis transmembrane conductance regulator and the epithelial sodium channel in Xenopus oocytes.
    Suaud L; Carattino M; Kleyman TR; Rubenstein RC
    J Biol Chem; 2002 Dec; 277(52):50341-7. PubMed ID: 12386156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.