These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 11585853)

  • 41. Mechanism of activation of Xenopus CFTR by stimulation of PKC.
    Chen Y; Altenberg GA; Reuss L
    Am J Physiol Cell Physiol; 2004 Nov; 287(5):C1256-63. PubMed ID: 15229107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress.
    Vitzthum C; Clauss WG; Fronius M
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2942-51. PubMed ID: 26357939
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural and ionic determinants of 5-nitro-2-(3-phenylprophyl-amino)-benzoic acid block of the CFTR chloride channel.
    Walsh KB; Long KJ; Shen X
    Br J Pharmacol; 1999 May; 127(2):369-76. PubMed ID: 10385235
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mutations at arginine 352 alter the pore architecture of CFTR.
    Cui G; Zhang ZR; O'Brien AR; Song B; McCarty NA
    J Membr Biol; 2008 Mar; 222(2):91-106. PubMed ID: 18421494
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CFTR channel in oocytes from Xenopus laevis and its regulation by xShroom1 protein.
    Palma AG; Galizia L; Kotsias BA; Marino GI
    Pflugers Arch; 2016 May; 468(5):871-80. PubMed ID: 26888038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Voltage-dependent block of the cystic fibrosis transmembrane conductance regulator Cl- channel by two closely related arylaminobenzoates.
    McCarty NA; McDonough S; Cohen BN; Riordan JR; Davidson N; Lester HA
    J Gen Physiol; 1993 Jul; 102(1):1-23. PubMed ID: 8397274
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Receptors that couple to 2 classes of G proteins increase cAMP and activate CFTR expressed in Xenopus oocytes.
    Uezono Y; Bradley J; Min C; McCarty NA; Quick M; Riordan JR; Chavkin C; Zinn K; Lester HA; Davidson N
    Recept Channels; 1993; 1(3):233-41. PubMed ID: 7522902
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Melatonin receptor potentiation of cyclic AMP and the cystic fibrosis transmembrane conductance regulator ion channel.
    Nelson CS; Marino JL; Allen CN
    J Pineal Res; 1999 Mar; 26(2):113-21. PubMed ID: 10100738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate.
    Li MS; Demsey AF; Qi J; Linsdell P
    Br J Pharmacol; 2009 Jul; 157(6):1065-71. PubMed ID: 19466983
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CFTR-dependent membrane insertion is linked to stimulation of the CFTR chloride conductance.
    Takahashi A; Watkins SC; Howard M; Frizzell RA
    Am J Physiol; 1996 Dec; 271(6 Pt 1):C1887-94. PubMed ID: 8997189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Changes in local S4 environment provide a voltage-sensing mechanism for mammalian hyperpolarization-activated HCN channels.
    Bell DC; Yao H; Saenger RC; Riley JH; Siegelbaum SA
    J Gen Physiol; 2004 Jan; 123(1):5-19. PubMed ID: 14676285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Function of the rat calcitonin receptors, C1a and C1b, expressed in Xenopus oocytes.
    Matsumoto M; Kaibara M; Uezono Y; Izumi F; Sumikawa K; Sexton PM; Taniyama K
    Biochem Biophys Res Commun; 1998 Jan; 242(3):484-91. PubMed ID: 9464242
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant.
    Qian F; El Hiani Y; Linsdell P
    Pflugers Arch; 2011 Oct; 462(4):559-71. PubMed ID: 21796338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cysteine mutagenesis and computer modeling of the S6 region of an intermediate conductance IKCa channel.
    Simoes M; Garneau L; Klein H; Banderali U; Hobeila F; Roux B; Parent L; Sauvé R
    J Gen Physiol; 2002 Jul; 120(1):99-116. PubMed ID: 12084779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH
    Biochemistry; 1998 Sep; 37(35):12233-40. PubMed ID: 9724537
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synergistic effects of cystic fibrosis transmembrane conductance regulator and aquaporin-9 in the rat epididymis.
    Cheung KH; Leung CT; Leung GP; Wong PY
    Biol Reprod; 2003 May; 68(5):1505-10. PubMed ID: 12606488
    [TBL] [Abstract][Full Text] [Related]  

  • 57. cAMP-dependent activation of CFTR inhibits the epithelial sodium channel (ENaC) without affecting its surface expression.
    Konstas AA; Koch JP; Korbmacher C
    Pflugers Arch; 2003 Jan; 445(4):513-21. PubMed ID: 12548398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes.
    Nagel G; Barbry P; Chabot H; Brochiero E; Hartung K; Grygorczyk R
    J Physiol; 2005 May; 564(Pt 3):671-82. PubMed ID: 15746174
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effects of spermine on the accessibility of residues in the M2 segment of Kir2.1 channels expressed in Xenopus oocytes.
    Chang HK; Yeh SH; Shieh RC
    J Physiol; 2003 Nov; 553(Pt 1):101-12. PubMed ID: 12963788
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway.
    Liu X; Dawson DC
    Biochemistry; 2011 Nov; 50(47):10311-7. PubMed ID: 22014307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.