These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 115865)

  • 1. The primer tRNA for Moloney murine leukemia virus DNA synthesis. Nucleotide sequence and aminoacylation of tRNAPro.
    Harada F; Peters GG; Dahlberg JE
    J Biol Chem; 1979 Nov; 254(21):10979-85. PubMed ID: 115865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-directed DNA synthesis in Moloney murine leukemia virus: interaction between the primer tRNA and the genome RNA.
    Peters G; Dahlberg JE
    J Virol; 1979 Aug; 31(2):398-407. PubMed ID: 480476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of a recombinant murine leukemia virus utilizing a new primer tRNA.
    Colicelli J; Goff SP
    J Virol; 1986 Jan; 57(1):37-45. PubMed ID: 2416955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A primer ribonucleic acid for initiation of in vitro Rous sarcarcoma virus deoxyribonucleic acid synthesis.
    Harada F; Sawyer RC; Dahlberg JE
    J Biol Chem; 1975 May; 250(9):3487-97. PubMed ID: 164470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-molecular-weight RNAs of Moloney murine leukemia virus: identification of the primer for RNA-directed DNA synthesis.
    Peters G; Harada F; Dahlberg JE; Panet A; Haseltine WA; Baltimore D
    J Virol; 1977 Mar; 21(3):1031-41. PubMed ID: 66325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initiation of (-) strand DNA synthesis from tRNA(3Lys) on lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions inhibiting primer utilization by retroviral reverse transcriptases.
    Arts EJ; Stetor SR; Li X; Rausch JW; Howard KJ; Ehresmann B; North TW; Wöhrl BM; Goody RS; Wainberg MA; Grice SF
    Proc Natl Acad Sci U S A; 1996 Sep; 93(19):10063-8. PubMed ID: 8816751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional idiosyncrasies of tRNA isoacceptors in cognate and noncognate aminoacylation systems.
    Fender A; Sissler M; Florentz C; Giegé R
    Biochimie; 2004 Jan; 86(1):21-9. PubMed ID: 14987797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modified nucleotides of tRNAPro restrict interactions in the binary primer/template complex of M-MuLV.
    Fossé P; Mougel M; Keith G; Westhof E; Ehresmann B; Ehresmann C
    J Mol Biol; 1998 Feb; 275(5):731-46. PubMed ID: 9480765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural UAG suppressor glutamine tRNA is elevated in mouse cells infected with Moloney murine leukemia virus.
    Kuchino Y; Beier H; Akita N; Nishimura S
    Proc Natl Acad Sci U S A; 1987 May; 84(9):2668-72. PubMed ID: 3472229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Base substitutions in the wobble position of the anticodon inhibit aminoacylation of E. coli tRNAfMet by E. coli Met-tRNA synthetase.
    Schulman LH; Pelka H; Susani M
    Nucleic Acids Res; 1983 Mar; 11(5):1439-55. PubMed ID: 6338482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of polymerase mutations on packaging of primer tRNAPro during murine leukemia virus assembly.
    Levin JG; Seidman JG
    J Virol; 1981 Apr; 38(1):403-8. PubMed ID: 6165833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of products of the Moloney murine leukemia virus endogenous DNA polymerase reaction.
    Haseltine WA; Coffin JM; Hageman TC
    J Virol; 1979 Apr; 30(1):375-83. PubMed ID: 90161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNase H domain of Moloney murine leukemia virus reverse transcriptase retains activity but requires the polymerase domain for specificity.
    Schultz SJ; Champoux JJ
    J Virol; 1996 Dec; 70(12):8630-8. PubMed ID: 8970988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aminoacylation of anticodon loop substituted yeast tyrosine transfer RNA.
    Bare L; Uhlenbeck OC
    Biochemistry; 1985 Apr; 24(9):2354-60. PubMed ID: 3846456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific cleavages by RNase H facilitate initiation of plus-strand RNA synthesis by Moloney murine leukemia virus.
    Schultz SJ; Zhang M; Champoux JJ
    J Virol; 2003 May; 77(9):5275-85. PubMed ID: 12692229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and aminoacylation of a temperature-sensitive tRNATrp (Escherichia coli).
    Eisenberg SP; Yarus M
    J Biol Chem; 1980 Feb; 255(3):1128-37. PubMed ID: 6766136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes in tRNA: consequences of aminoacylation and codon--anticodon recognition.
    Dvorak D; Kidson C; Winzor DJ
    FEBS Lett; 1978 Jun; 90(2):187-8. PubMed ID: 352721
    [No Abstract]   [Full Text] [Related]  

  • 18. Interaction between yeast tRNAVal and yeast valyl-tRNA synthetase studied by monochromatic-ultraviolet-light-induced cross-linking.
    Renaud M; Dietrich A; Giegé R; Remy P; Ebel JP
    Eur J Biochem; 1979 Nov; 101(2):475-83. PubMed ID: 118003
    [No Abstract]   [Full Text] [Related]  

  • 19. Properties of strand displacement synthesis by Moloney murine leukemia virus reverse transcriptase: mechanistic implications.
    Whiting SH; Champoux JJ
    J Mol Biol; 1998 May; 278(3):559-77. PubMed ID: 9600839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minor serine tRNA containing anticodon NCA (C4 RNA) from human and mouse cells.
    Kato N; Hoshino H; Harada F
    Biochem Int; 1983 Nov; 7(5):635-45. PubMed ID: 6435631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.