These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 11586716)

  • 1. Computerised glow curve analysis: a tool for routine thermoluminescence dosimetry.
    Delgado A; Gómez Ros JM
    Radiat Prot Dosimetry; 2001; 96(1-3):127-32. PubMed ID: 11586716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glow curve evaluation in routine personal dosimetry.
    Al-Haj AN; Lagarde CS
    Health Phys; 2004 Feb; 86(2 Suppl):S15-9. PubMed ID: 14744064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of computerised glow curve analysis will optimise personal thermoluminescence dosimetry measurements. Favouring the proposition.
    Horowitz Y; Delgado A
    Radiat Prot Dosimetry; 2002; 102(3):269-73. PubMed ID: 12430966
    [No Abstract]   [Full Text] [Related]  

  • 4. The use of computerised glow curve analysis will optimise personal thermoluminescence dosimetry measurements. Opposing the proposition.
    Pradhan AS; Yoder RC
    Radiat Prot Dosimetry; 2002; 102(3):274-7. PubMed ID: 12430967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highlights and pitfalls of 20 years of application of computerised glow curve analysis to thermoluminescence research and dosimetry.
    Horowitz YS; Moscovitch M
    Radiat Prot Dosimetry; 2013 Jan; 153(1):1-22. PubMed ID: 22987121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A computer program for the deconvolution of thermoluminescence glow curves.
    Chung KS; Choe HS; Lee JI; Kim JL; Chang SY
    Radiat Prot Dosimetry; 2005; 115(1-4):343-9. PubMed ID: 16381744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new algorithm for identifying abnormal glow curves in thermoluminescence personal dosimetry.
    Osorio Piniella V; Stadtmann H; Lankmayr E
    Radiat Prot Dosimetry; 2001; 96(1-3):139-41. PubMed ID: 11586718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot study on the application of computerised glow curve analysis in TL based personal dosimetry services.
    Delgado A; Gómez Ros JM; Stadtman H; Osorio V; Fantuzzi E; Vanhavere F
    Radiat Prot Dosimetry; 2002; 101(1-4):191-6. PubMed ID: 12382733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermoluminescence in medical dosimetry.
    Rivera T
    Appl Radiat Isot; 2012 Dec; 71 Suppl():30-4. PubMed ID: 22633888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre- and post-irradiation fading of 6LiF:Mg,Ti (TLD-600) exposed to thermal neutrons.
    Vainblat N; German U; Weinstein M; Alfassi ZB
    Radiat Prot Dosimetry; 2007; 126(1-4):318-21. PubMed ID: 17496295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced multistage deconvolution applied to composite glow peak 5 in LiF:Mg,Ti (TLD-100).
    Horowitz YS; Fuks E; Oster L; Podpalov L; Belaish Y; Shachar BB
    Radiat Prot Dosimetry; 2007; 126(1-4):322-5. PubMed ID: 17517677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between thermoluminescence and electronic dosimetry results at the Belgian Nuclear Research Centre.
    Vanhavere F; Coeck M
    Radiat Prot Dosimetry; 2001; 96(1-3):105-8. PubMed ID: 11586711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Search for common characteristics in the glow curves of quartz of various origins.
    Pagonis V; Tatsis E; Kitis G; Drupieski C
    Radiat Prot Dosimetry; 2002; 100(1-4):373-6. PubMed ID: 12382901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A THIN-LAYER LIF THERMOLUMINESCENCE DOSEMETER SYSTEM WITH FAST READOUT FOR THE USE IN PERSONAL DOSIMETRY SERVICES.
    Walbersloh J; Busch F
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):191-4. PubMed ID: 26622040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detailed kinetic study of the thermoluminescence glow curve of synthetic quartz.
    Kitis G; Pagonis V; Carty H; Tatsis E
    Radiat Prot Dosimetry; 2002; 100(1-4):225-8. PubMed ID: 12382865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method of identification of abnormal glow curves in individual monitoring using CaSO4:Dy teflon TLD and hot gas reader.
    Pradhan SM; Sneha C; Adtani MM
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):195-8. PubMed ID: 21186222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thermoluminescence glow curve and the deconvoluted glow peak characteristics of erbium doped silica fiber exposed to 70-130 kVp x-rays.
    Alawiah A; Bauk S; Marashdeh MW; Nazura MZ; Abdul-Rashid HA; Yusoff Z; Gieszczyk W; Noramaliza MN; Adikan FR; Mahdiraji GA; Tamchek N; Muhd-Yassin SZ; Mat-Sharif KA; Zulkifli MI; Omar N; Wan Abdullah WS; Bradley DA
    Appl Radiat Isot; 2015 Oct; 104():197-202. PubMed ID: 26188687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of reading pre-irradiation background signal on the post-irradiation glow curves of thermoluminescence dosimeters.
    Abd El-Hafez AI; Maghraby A
    Appl Radiat Isot; 2011 Oct; 69(10):1533-9. PubMed ID: 21724407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoluminescence glow curve deconvolution and its statistical analysis using the flexibility of spreadsheet programs.
    van Dijk JW
    Radiat Prot Dosimetry; 2006; 119(1-4):332-8. PubMed ID: 16731693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.
    Afouxenidis D; Polymeris GS; Tsirliganis NC; Kitis G
    Radiat Prot Dosimetry; 2012 May; 149(4):363-70. PubMed ID: 21765155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.