BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 11587552)

  • 1. Epileptogenesis induces long-term alterations in intracellular calcium release and sequestration mechanisms in the hippocampal neuronal culture model of epilepsy.
    Pal S; Sun D; Limbrick D; Rafiq A; DeLorenzo RJ
    Cell Calcium; 2001 Oct; 30(4):285-96. PubMed ID: 11587552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of spontaneous recurrent epileptiform discharges causes long-term changes in intracellular calcium homeostatic mechanisms.
    Pal S; Limbrick DD; Rafiq A; DeLorenzo RJ
    Cell Calcium; 2000 Sep; 28(3):181-93. PubMed ID: 11020380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term alteration of calcium homeostatic mechanisms in the pilocarpine model of temporal lobe epilepsy.
    Raza M; Pal S; Rafiq A; DeLorenzo RJ
    Brain Res; 2001 Jun; 903(1-2):1-12. PubMed ID: 11382382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Levetiracetam inhibits both ryanodine and IP3 receptor activated calcium induced calcium release in hippocampal neurons in culture.
    Nagarkatti N; Deshpande LS; DeLorenzo RJ
    Neurosci Lett; 2008 May; 436(3):289-93. PubMed ID: 18406528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular mechanism for spontaneous calcium oscillations in astrocytes.
    Wang TF; Zhou C; Tang AH; Wang SQ; Chai Z
    Acta Pharmacol Sin; 2006 Jul; 27(7):861-8. PubMed ID: 16787570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered calcium/calmodulin kinase II activity changes calcium homeostasis that underlies epileptiform activity in hippocampal neurons in culture.
    Carter DS; Haider SN; Blair RE; Deshpande LS; Sombati S; DeLorenzo RJ
    J Pharmacol Exp Ther; 2006 Dec; 319(3):1021-31. PubMed ID: 16971505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuregulin beta1 enhances peak glutamate-induced intracellular calcium levels through endoplasmic reticulum calcium release in cultured hippocampal neurons.
    Schapansky J; Morissette M; Odero G; Albensi B; Glazner G
    Can J Physiol Pharmacol; 2009 Oct; 87(10):883-91. PubMed ID: 20052014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vitro model of stroke-induced epilepsy: elucidation of the roles of glutamate and calcium in the induction and maintenance of stroke-induced epileptogenesis.
    DeLorenzo RJ; Sun DA; Blair RE; Sombati S
    Int Rev Neurobiol; 2007; 81():59-84. PubMed ID: 17433918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-lasting alterations in neuronal calcium homeostasis in an in vitro model of stroke-induced epilepsy.
    Sun DA; Sombati S; Blair RE; DeLorenzo RJ
    Cell Calcium; 2004 Feb; 35(2):155-63. PubMed ID: 14706289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the androgen receptor alters the intracellular calcium response to glutamate in primary hippocampal neurons and modulates sarco/endoplasmic reticulum calcium ATPase 2 transcription.
    Foradori CD; Werner SB; Sandau US; Clapp TR; Handa RJ
    Neuroscience; 2007 Oct; 149(1):155-64. PubMed ID: 17870249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seizure-induced cell death produced by repeated tetanic stimulation in vitro: possible role of endoplasmic reticulum calcium stores.
    Pelletier MR; Wadia JS; Mills LR; Carlen PL
    J Neurophysiol; 1999 Jun; 81(6):3054-64. PubMed ID: 10368420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical characterization, distribution and phylogenetic analysis of Drosophila melanogaster ryanodine and IP3 receptors, and thapsigargin-sensitive Ca2+ ATPase.
    Vázquez-Martínez O; Cañedo-Merino R; Díaz-Muñoz M; Riesgo-Escovar JR
    J Cell Sci; 2003 Jun; 116(Pt 12):2483-94. PubMed ID: 12766186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium-dependent epileptogenesis in an in vitro model of stroke-induced "epilepsy".
    Sun DA; Sombati S; Blair RE; DeLorenzo RJ
    Epilepsia; 2002 Nov; 43(11):1296-305. PubMed ID: 12423378
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release.
    Coulon P; Herr D; Kanyshkova T; Meuth P; Budde T; Pape HC
    Cell Calcium; 2009; 46(5-6):333-46. PubMed ID: 19913909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ryanodine stores and calcium regulation in the inner segments of salamander rods and cones.
    Krizaj D; Lai FA; Copenhagen DR
    J Physiol; 2003 Mar; 547(Pt 3):761-74. PubMed ID: 12562925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin.
    Pelled D; Lloyd-Evans E; Riebeling C; Jeyakumar M; Platt FM; Futerman AH
    J Biol Chem; 2003 Aug; 278(32):29496-501. PubMed ID: 12756243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epileptiform activity induces distance-dependent alterations of the Ca2+ extrusion mechanism in the apical dendrites of subicular pyramidal neurons.
    Srinivas KV; Sikdar SK
    Eur J Neurosci; 2008 Dec; 28(11):2195-212. PubMed ID: 19046366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epileptogenesis causes an N-methyl-d-aspartate receptor/Ca2+-dependent decrease in Ca2+/calmodulin-dependent protein kinase II activity in a hippocampal neuronal culture model of spontaneous recurrent epileptiform discharges.
    Blair RE; Sombati S; Churn SB; Delorenzo RJ
    Eur J Pharmacol; 2008 Jun; 588(1):64-71. PubMed ID: 18495112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A store-operated Ca2+ influx activated in response to the depletion of thapsigargin-sensitive Ca2+ stores is developmentally regulated in embryonic cortical neurons from mice.
    Bouron A; Altafaj X; Boisseau S; De Waard M
    Brain Res Dev Brain Res; 2005 Sep; 159(1):64-71. PubMed ID: 16099516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that injury-induced changes in hippocampal neuronal calcium dynamics during epileptogenesis cause acquired epilepsy.
    Raza M; Blair RE; Sombati S; Carter DS; Deshpande LS; DeLorenzo RJ
    Proc Natl Acad Sci U S A; 2004 Dec; 101(50):17522-7. PubMed ID: 15583136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.