BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 11587574)

  • 1. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion.
    Nemati M; Jenneman GE; Voordouw G
    Biotechnol Prog; 2001; 17(5):852-9. PubMed ID: 11587574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs.
    Nemati M; Jenneman GE; Voordouw G
    Biotechnol Bioeng; 2001 Sep; 74(5):424-34. PubMed ID: 11427944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.
    Lin S; Krause F; Voordouw G
    Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil field souring control by nitrate-reducing Sulfurospirillum spp. that outcompete sulfate-reducing bacteria for organic electron donors.
    Hubert C; Voordouw G
    Appl Environ Microbiol; 2007 Apr; 73(8):2644-52. PubMed ID: 17308184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria.
    Haveman SA; Greene EA; Voordouw G
    Environ Microbiol; 2005 Sep; 7(9):1461-5. PubMed ID: 16104868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria.
    Greene EA; Hubert C; Nemati M; Jenneman GE; Voordouw G
    Environ Microbiol; 2003 Jul; 5(7):607-17. PubMed ID: 12823193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corrosion risk associated with microbial souring control using nitrate or nitrite.
    Hubert C; Nemati M; Jenneman G; Voordouw G
    Appl Microbiol Biotechnol; 2005 Aug; 68(2):272-82. PubMed ID: 15711941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate stimulation of indigenous nitrate-reducing, sulfide-oxidising bacterial community in wastewater anaerobic biofilms.
    Garcia-de-Lomas J; Corzo A; Carmen Portillo M; Gonzalez JM; Andrades JA; Saiz-Jimenez C; Garcia-Robledo E
    Water Res; 2007 Jul; 41(14):3121-31. PubMed ID: 17524444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Containment of biogenic sulfide production in continuous up-flow packed-bed bioreactors with nitrate or nitrite.
    Hubert C; Nemati M; Jenneman G; Voordouw G
    Biotechnol Prog; 2003; 19(2):338-45. PubMed ID: 12675569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolites of an Oil Field Sulfide-Oxidizing, Nitrate-Reducing
    Lahme S; Enning D; Callbeck CM; Menendez Vega D; Curtis TP; Head IM; Hubert CRJ
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30446554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of corrosion rates associated with nitrite or nitrate mediated control of souring under biological conditions simulating an oil reservoir.
    Rempel CL; Evitts RW; Nemati M
    J Ind Microbiol Biotechnol; 2006 Oct; 33(10):878-86. PubMed ID: 16758172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and microbiological changes in laboratory incubations of nitrate amendment "sour" produced waters from three western Canadian oil fields.
    Eckford RE; Fedorak PM
    J Ind Microbiol Biotechnol; 2002 Nov; 29(5):243-54. PubMed ID: 12407458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.
    De Gusseme B; De Schryver P; De Cooman M; Verbeken K; Boeckx P; Verstraete W; Boon N
    FEMS Microbiol Ecol; 2009 Jan; 67(1):151-61. PubMed ID: 19120464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planktonic nitrate-reducing bacteria and sulfate-reducing bacteria in some western Canadian oil field waters.
    Eckford RE; Fedorak PM
    J Ind Microbiol Biotechnol; 2002 Aug; 29(2):83-92. PubMed ID: 12161775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive oxidation of volatile fatty acids by sulfate- and nitrate-reducing bacteria from an oil field in Argentina.
    Grigoryan AA; Cornish SL; Buziak B; Lin S; Cavallaro A; Arensdorf JJ; Voordouw G
    Appl Environ Microbiol; 2008 Jul; 74(14):4324-35. PubMed ID: 18502934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection.
    Myhr S; Lillebø BL; Sunde E; Beeder J; Torsvik T
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):400-8. PubMed ID: 11935194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiology to help solve our energy needs: methanogenesis from oil and the impact of nitrate on the oil-field sulfur cycle.
    Grigoryan A; Voordouw G
    Ann N Y Acad Sci; 2008 Mar; 1125():345-52. PubMed ID: 18378604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Inhibition of the activity of sulfate-reducing bacteria in produced water from oil reservoir by nitrate].
    Yang DY; Zhang Y; Shi RJ; Han SQ; Li GZ; Li GQ; Zhao JY
    Huan Jing Ke Xue; 2014 Jan; 35(1):319-26. PubMed ID: 24720222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production-related petroleum microbiology: progress and prospects.
    Voordouw G
    Curr Opin Biotechnol; 2011 Jun; 22(3):401-5. PubMed ID: 21257304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.