These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mechanism of NAD(P)H:quinone reductase: Ab initio studies of reduced flavin. Cavelier G; Amzel LM Proteins; 2001 Jun; 43(4):420-32. PubMed ID: 11340659 [TBL] [Abstract][Full Text] [Related]
5. The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Li R; Bianchet MA; Talalay P; Amzel LM Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8846-50. PubMed ID: 7568029 [TBL] [Abstract][Full Text] [Related]
6. Kinetic and docking studies of the interaction of quinones with the quinone reductase active site. Zhou Z; Fisher D; Spidel J; Greenfield J; Patson B; Fazal A; Wigal C; Moe OA; Madura JD Biochemistry; 2003 Feb; 42(7):1985-94. PubMed ID: 12590585 [TBL] [Abstract][Full Text] [Related]
7. NAD(P)H:Quinone Oxidoreductase 1 (NQO1) as a Therapeutic and Diagnostic Target in Cancer. Zhang K; Chen D; Ma K; Wu X; Hao H; Jiang S J Med Chem; 2018 Aug; 61(16):6983-7003. PubMed ID: 29712428 [TBL] [Abstract][Full Text] [Related]
8. Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase (DT-diaphorase) as a target for bioreductive antitumor quinones: quinone cytotoxicity and selectivity in human lung and breast cancer cell lines. Beall HD; Murphy AM; Siegel D; Hargreaves RH; Butler J; Ross D Mol Pharmacol; 1995 Sep; 48(3):499-504. PubMed ID: 7565631 [TBL] [Abstract][Full Text] [Related]
9. Structures of recombinant human and mouse NAD(P)H:quinone oxidoreductases: species comparison and structural changes with substrate binding and release. Faig M; Bianchet MA; Talalay P; Chen S; Winski S; Ross D; Amzel LM Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3177-82. PubMed ID: 10706635 [TBL] [Abstract][Full Text] [Related]
10. In cellulo monitoring of quinone reductase activity and reactive oxygen species production during the redox cycling of 1,2 and 1,4 quinones. Cassagnes LE; Perio P; Ferry G; Moulharat N; Antoine M; Gayon R; Boutin JA; Nepveu F; Reybier K Free Radic Biol Med; 2015 Dec; 89():126-34. PubMed ID: 26386287 [TBL] [Abstract][Full Text] [Related]
11. Catalytic properties of NAD(P)H:quinone acceptor oxidoreductase: study involving mouse, rat, human, and mouse-rat chimeric enzymes. Chen S; Knox R; Lewis AD; Friedlos F; Workman P; Deng PS; Fung M; Ebenstein D; Wu K; Tsai TM Mol Pharmacol; 1995 May; 47(5):934-9. PubMed ID: 7746280 [TBL] [Abstract][Full Text] [Related]
12. A new screening system for NAD(P)H:quinone oxidoreductase (NQO1)-directed antitumor quinones: identification of a new aziridinylbenzoquinone, RH1, as a NQO1-directed antitumor agent. Winski SL; Hargreaves RH; Butler J; Ross D Clin Cancer Res; 1998 Dec; 4(12):3083-8. PubMed ID: 9865924 [TBL] [Abstract][Full Text] [Related]
13. Structural insights into the cofactor-assisted substrate recognition of yeast quinone oxidoreductase Zta1. Guo PC; Ma XX; Bao ZZ; Ma JD; Chen Y; Zhou CZ J Struct Biol; 2011 Oct; 176(1):112-8. PubMed ID: 21820057 [TBL] [Abstract][Full Text] [Related]
14. Natural and synthetic quinones and their reduction by the quinone reductase enzyme NQO1: from synthetic organic chemistry to compounds with anticancer potential. Colucci MA; Moody CJ; Couch GD Org Biomol Chem; 2008 Feb; 6(4):637-56. PubMed ID: 18264564 [TBL] [Abstract][Full Text] [Related]
15. Human NAD(P)H:quinone oxidoreductase type I (hNQO1) activation of quinone propionic acid trigger groups. Mendoza MF; Hollabaugh NM; Hettiarachchi SU; McCarley RL Biochemistry; 2012 Oct; 51(40):8014-26. PubMed ID: 22989153 [TBL] [Abstract][Full Text] [Related]
16. Structural views of quinone oxidoreductase from Mycobacterium tuberculosis reveal large conformational changes induced by the co-factor. Zheng Q; Song Y; Zhang W; Shaw N; Zhou W; Rao Z FEBS J; 2015 Jul; 282(14):2697-707. PubMed ID: 25924579 [TBL] [Abstract][Full Text] [Related]
17. Type-II NADH:quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction. Sena FV; Batista AP; Catarino T; Brito JA; Archer M; Viertler M; Madl T; Cabrita EJ; Pereira MM Mol Microbiol; 2015 Oct; 98(2):272-88. PubMed ID: 26172206 [TBL] [Abstract][Full Text] [Related]
18. Relationship between NAD(P)H:quinone oxidoreductase 1 (NQO1) levels in a series of stably transfected cell lines and susceptibility to antitumor quinones. Winski SL; Swann E; Hargreaves RH; Dehn DL; Butler J; Moody CJ; Ross D Biochem Pharmacol; 2001 Jun; 61(12):1509-16. PubMed ID: 11377380 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of quinone reductase 2 in complex with cancer prodrug CB1954. Fu Y; Buryanovskyy L; Zhang Z Biochem Biophys Res Commun; 2005 Oct; 336(1):332-8. PubMed ID: 16129418 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of human quinone reductase type 2, a metalloflavoprotein. Foster CE; Bianchet MA; Talalay P; Zhao Q; Amzel LM Biochemistry; 1999 Aug; 38(31):9881-6. PubMed ID: 10433694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]