These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 11587891)

  • 1. Neural correlates of advance movement preparation: a dipole source analysis approach.
    Leuthold H; Jentzsch I
    Brain Res Cogn Brain Res; 2001 Oct; 12(2):207-24. PubMed ID: 11587891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High resolution DC-EEG analysis of the Bereitschaftspotential and post movement onset potentials accompanying uni- or bilateral voluntary finger movements.
    Cui RQ; Deecke L
    Brain Topogr; 1999; 11(3):233-49. PubMed ID: 10217447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sources of movement-related cortical potentials derived from foot, finger, and mouth movements.
    Milliken GW; Stokic DS; Tarkka IM
    J Clin Neurophysiol; 1999 Jul; 16(4):361-72. PubMed ID: 10478709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral structures participating in motor preparation in humans: a positron emission tomography study.
    Deiber MP; Ibañez V; Sadato N; Hallett M
    J Neurophysiol; 1996 Jan; 75(1):233-47. PubMed ID: 8822554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advance movement preparation of eye, foot, and hand: a comparative study using movement-related brain potentials.
    Jentzsch I; Leuthold H
    Brain Res Cogn Brain Res; 2002 Aug; 14(2):201-17. PubMed ID: 12067693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements.
    Gerloff C; Richard J; Hadley J; Schulman AE; Honda M; Hallett M
    Brain; 1998 Aug; 121 ( Pt 8)():1513-31. PubMed ID: 9712013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracerebral ERD/ERS in voluntary movement and in cognitive visuomotor task.
    Rektor I; Sochůrková D; Bocková M
    Prog Brain Res; 2006; 159():311-30. PubMed ID: 17071240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internally driven vs. externally cued movement selection: a study on the timing of brain activity.
    Thut G; Hauert C; Viviani P; Morand S; Spinelli L; Blanke O; Landis T; Michel C
    Brain Res Cogn Brain Res; 2000 Jun; 9(3):261-9. PubMed ID: 10808137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey.
    Crutcher MD; Russo GS; Ye S; Backus DA
    Exp Brain Res; 2004 Oct; 158(3):278-88. PubMed ID: 15365665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement-related potentials in Huntington's disease: movement preparation and execution.
    Johnson KA; Cunnington R; Iansek R; Bradshaw JL; Georgiou N; Chiu E
    Exp Brain Res; 2001 Jun; 138(4):492-9. PubMed ID: 11465748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evoked potentials in motor cortical local field potentials reflect task timing and behavioral performance.
    Kilavik BE; Confais J; Ponce-Alvarez A; Diesmann M; Riehle A
    J Neurophysiol; 2010 Nov; 104(5):2338-51. PubMed ID: 20884766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in areas of human frontal medial wall activated by left and right motor execution: dipole-tracing analysis of grand-averaged potentials incorporated with MNI three-layer head model.
    Inoue M; Masaoka Y; Kawamura M; Okamoto Y; Homma I
    Neurosci Lett; 2008 May; 437(2):82-7. PubMed ID: 18440140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI.
    Ball T; Schreiber A; Feige B; Wagner M; Lücking CH; Kristeva-Feige R
    Neuroimage; 1999 Dec; 10(6):682-94. PubMed ID: 10600414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions.
    do Nascimento OF; Nielsen KD; Voigt M
    Exp Brain Res; 2006 May; 171(1):78-90. PubMed ID: 16320044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronization of parietal and premotor areas during preparation and execution of praxis hand movements.
    Wheaton LA; Nolte G; Bohlhalter S; Fridman E; Hallett M
    Clin Neurophysiol; 2005 Jun; 116(6):1382-90. PubMed ID: 15978500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement-related change of electrocorticographic activity in human supplementary motor area proper.
    Ohara S; Ikeda A; Kunieda T; Yazawa S; Baba K; Nagamine T; Taki W; Hashimoto N; Mihara T; Shibasaki H
    Brain; 2000 Jun; 123 ( Pt 6)():1203-15. PubMed ID: 10825358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural activity in monkey dorsal and ventral cingulate motor areas: comparison with the supplementary motor area.
    Russo GS; Backus DA; Ye S; Crutcher MD
    J Neurophysiol; 2002 Nov; 88(5):2612-29. PubMed ID: 12424298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attention to movement modulates activity in sensori-motor areas, including primary motor cortex.
    Johansen-Berg H; Matthews PM
    Exp Brain Res; 2002 Jan; 142(1):13-24. PubMed ID: 11797080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of neural activity in the supplementary motor area and in the primary motor cortex in monkeys.
    Chen DF; Hyland B; Maier V; Palmeri A; Wiesendanger M
    Somatosens Mot Res; 1991; 8(1):27-44. PubMed ID: 1646555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatiotemporal source localisation reveals involvement of medial premotor areas in movement reprogramming.
    Leuthold H; Jentzsch I
    Exp Brain Res; 2002 May; 144(2):178-88. PubMed ID: 12012156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.