BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11587964)

  • 21. Organelle-specific cochaperonins in apicomplexan parasites.
    Sato S; Wilson RJ
    Mol Biochem Parasitol; 2005 Jun; 141(2):133-143. PubMed ID: 15926202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-wide survey and evolutionary analysis of trypsin proteases in apicomplexan parasites.
    Arenas AF; Osorio-Méndez JF; Gutierrez AJ; Gomez-Marin JE
    Genomics Proteomics Bioinformatics; 2010 Jun; 8(2):103-12. PubMed ID: 20691395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and Biochemical Features of
    Sato D; Hartuti ED; Inaoka DK; Sakura T; Amalia E; Nagahama M; Yoshioka Y; Tsuji N; Nozaki T; Kita K; Harada S; Matsubayashi M; Shiba T
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33297567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets.
    Coombs GH; Goldberg DE; Klemba M; Berry C; Kay J; Mottram JC
    Trends Parasitol; 2001 Nov; 17(11):532-7. PubMed ID: 11872398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmepsin 4, the food vacuole aspartic proteinase found in all Plasmodium spp. infecting man.
    Dame JB; Yowell CA; Omara-Opyene L; Carlton JM; Cooper RA; Li T
    Mol Biochem Parasitol; 2003 Aug; 130(1):1-12. PubMed ID: 14550891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Type I and type II fatty acid biosynthesis in Eimeria tenella: enoyl reductase activity and structure.
    Lu JZ; Muench SP; Allary M; Campbell S; Roberts CW; Mui E; McLeod RL; Rice DW; Prigge ST
    Parasitology; 2007 Dec; 134(Pt.14):1949-62. PubMed ID: 17697396
    [TBL] [Abstract][Full Text] [Related]  

  • 27. cDNA cloning of an aspartic proteinase secreted by Candida albicans.
    Mukai H; Takeda O; Asada K; Kato I; Murayama SY; Yamaguchi H
    Microbiol Immunol; 1992; 36(11):1207-16. PubMed ID: 1491622
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-scale intron conservation and order-of-magnitude variation in intron loss/gain rates in apicomplexan evolution.
    Roy SW; Penny D
    Genome Res; 2006 Oct; 16(10):1270-5. PubMed ID: 16963708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Naturally-occurring and recombinant forms of the aspartic proteinases plasmepsins I and II from the human malaria parasite Plasmodium falciparum.
    Tyas L; Gluzman I; Moon RP; Rupp K; Westling J; Ridley RG; Kay J; Goldberg DE; Berry C
    FEBS Lett; 1999 Jul; 454(3):210-4. PubMed ID: 10431809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy.
    Omara-Opyene AL; Moura PA; Sulsona CR; Bonilla JA; Yowell CA; Fujioka H; Fidock DA; Dame JB
    J Biol Chem; 2004 Dec; 279(52):54088-96. PubMed ID: 15491999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Eimeria tenella: identification of secretory and surface proteins from expressed sequence tags.
    Klotz C; Marhöfer RJ; Selzer PM; Lucius R; Pogonka T
    Exp Parasitol; 2005 Sep; 111(1):14-23. PubMed ID: 15936018
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular characterization and analysis of a novel calcium-dependent protein kinase from Eimeria tenella.
    Han HY; Zhu SH; Jiang LL; Li Y; Dong H; Zhao QP; Kong CL; Huang B
    Parasitology; 2013 May; 140(6):746-55. PubMed ID: 23369433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of plasmepsin V, a membrane-bound aspartic protease homolog in the endoplasmic reticulum of Plasmodium falciparum.
    Klemba M; Goldberg DE
    Mol Biochem Parasitol; 2005 Oct; 143(2):183-91. PubMed ID: 16024107
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage.
    Blanchard JL; Hicks JS
    J Eukaryot Microbiol; 1999; 46(4):367-75. PubMed ID: 10461383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Aspartic proteinases from the human malaria parasite Plasmodium falciparum.
    Berry C; Dame JB; Dunn BM; Kay J
    Adv Exp Med Biol; 1995; 362():511-8. PubMed ID: 8540365
    [No Abstract]   [Full Text] [Related]  

  • 36. Phylogeny and evolution of apicoplasts and apicomplexan parasites.
    Arisue N; Hashimoto T
    Parasitol Int; 2015 Jun; 64(3):254-9. PubMed ID: 25451217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella.
    Pinney JW; Shirley MW; McConkey GA; Westhead DR
    Nucleic Acids Res; 2005; 33(4):1399-409. PubMed ID: 15745999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic analysis of plasmepsins I and II aspartic proteases of the Plasmodium falciparum digestive vacuole.
    Luker KE; Francis SE; Gluzman IY; Goldberg DE
    Mol Biochem Parasitol; 1996 Jul; 79(1):71-8. PubMed ID: 8844673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa.
    Talevich E; Mirza A; Kannan N
    BMC Evol Biol; 2011 Nov; 11():321. PubMed ID: 22047078
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms underlying the evolution and maintenance of functionally heterogeneous 18S rRNA genes in Apicomplexans.
    Rooney AP
    Mol Biol Evol; 2004 Sep; 21(9):1704-11. PubMed ID: 15175411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.