These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 11588185)

  • 1. Primordial rhythmic bursting in embryonic cochlear ganglion cells.
    Jones TA; Jones SM; Paggett KC
    J Neurosci; 2001 Oct; 21(20):8129-35. PubMed ID: 11588185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous activity in the statoacoustic ganglion of the chicken embryo.
    Jones TA; Jones SM
    J Neurophysiol; 2000 Mar; 83(3):1452-68. PubMed ID: 10712472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous discharge patterns in cochlear spiral ganglion cells before the onset of hearing in cats.
    Jones TA; Leake PA; Snyder RL; Stakhovskaya O; Bonham B
    J Neurophysiol; 2007 Oct; 98(4):1898-908. PubMed ID: 17686914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning, spontaneous activity and tonotopic map in chicken cochlear ganglion neurons following sound-induced hair cell loss and regeneration.
    Chen L; Trautwein PG; Shero M; Salvi RJ
    Hear Res; 1996 Sep; 98(1-2):152-64. PubMed ID: 8880189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between frequency of spontaneous bursting and tonotopic position in the developing avian auditory system.
    Lippe WR
    Brain Res; 1995 Dec; 703(1-2):205-13. PubMed ID: 8719634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discharge patterns of cochlear ganglion neurons in the chicken.
    Salvi RJ; Saunders SS; Powers NL; Boettcher FA
    J Comp Physiol A; 1992 Feb; 170(2):227-41. PubMed ID: 1583607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhythmic spontaneous activity in the developing avian auditory system.
    Lippe WR
    J Neurosci; 1994 Mar; 14(3 Pt 2):1486-95. PubMed ID: 8126550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antidromic responses of single units from the spiral ganglion.
    Brown MC
    J Neurophysiol; 1994 May; 71(5):1835-47. PubMed ID: 8064351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Outer Hair Cell Glutamate Signaling through Type II Spiral Ganglion Afferents Activates Neurons in the Cochlear Nucleus in Response to Nondamaging Sounds.
    Weisz CJC; Williams SG; Eckard CS; Divito CB; Ferreira DW; Fantetti KN; Dettwyler SA; Cai HM; Rubio ME; Kandler K; Seal RP
    J Neurosci; 2021 Mar; 41(13):2930-2943. PubMed ID: 33574178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory system development: primary auditory neurons and their targets.
    Rubel EW; Fritzsch B
    Annu Rev Neurosci; 2002; 25():51-101. PubMed ID: 12052904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Firing properties of auditory primary afferents from the basilar papilla in the chick.
    Galicia S; Cortes C; Cebada J; Méndez-Balbuena I; Flores A
    Int J Dev Neurosci; 2015 Aug; 44():92-101. PubMed ID: 26070862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional specification of threshold sensitivity and response time in CBA/CaJ mouse spiral ganglion neurons.
    Liu Q; Davis RL
    J Neurophysiol; 2007 Oct; 98(4):2215-22. PubMed ID: 17715200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Cochlear Spiral Ganglion Neurons: The Auditory Portion of the VIII Nerve.
    Carricondo F; Romero-Gómez B
    Anat Rec (Hoboken); 2019 Mar; 302(3):463-471. PubMed ID: 29659185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous bursting and rhythmic activity in the cuneate nucleus of anaesthetized rats.
    Sánchez E; Reboreda A; Romero M; Lamas JA
    Neuroscience; 2006 Aug; 141(1):487-500. PubMed ID: 16675133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innervation patterns and spontaneous activity of afferent fibres to the lagenar macula and apical basilar papilla of the chick's cochlea.
    Manley GA; Haeseler C; Brix J
    Hear Res; 1991 Nov; 56(1-2):211-26. PubMed ID: 1685157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural tuning characteristics of auditory primary afferents in the chicken embryo.
    Jones SM; Jones TA
    Hear Res; 1995 Feb; 82(2):139-48. PubMed ID: 7775280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.
    Kaur T; Zamani D; Tong L; Rubel EW; Ohlemiller KK; Hirose K; Warchol ME
    J Neurosci; 2015 Nov; 35(45):15050-61. PubMed ID: 26558776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First order temporal properties of spontaneous and tone-evoked activity of auditory afferent neurones in the cochlear ganglion of the pigeon.
    Gummer AW
    Hear Res; 1991 Oct; 55(2):143-66. PubMed ID: 1757283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats.
    Snyder RL; Leake PA
    J Comp Neurol; 1997 Jul; 384(2):293-311. PubMed ID: 9215724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location.
    Adamson CL; Reid MA; Mo ZL; Bowne-English J; Davis RL
    J Comp Neurol; 2002 Jun; 447(4):331-50. PubMed ID: 11992520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.