BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 11588825)

  • 1. In situ assessment of microbial sulfate reduction in a petroleum-contaminated aquifer using push-pull tests and stable sulfur isotope analyses.
    Schroth MH; Kleikemper J; Bolliger C; Bernasconi SM; Zeyer J
    J Contam Hydrol; 2001 Oct; 51(3-4):179-95. PubMed ID: 11588825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer.
    Kleikemper J; Schroth MH; Sigler WV; Schmucki M; Bernasconi SM; Zeyer J
    Appl Environ Microbiol; 2002 Apr; 68(4):1516-23. PubMed ID: 11916663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulfur cycling and biodegradation in contaminated aquifers: insights from stable isotope investigations.
    Knöller K; Vogt C; Feisthauer S; Weise SM; Weiss H; Richnow HH
    Environ Sci Technol; 2008 Nov; 42(21):7807-12. PubMed ID: 19031864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate-consuming processes in a petroleum-contaminated aquifer quantified using push-pull tests combined with 15N isotope and acetylene-inhibition methods.
    Schürmann A; Schroth MH; Saurer M; Bernasconi SM; Zeyer J
    J Contam Hydrol; 2003 Oct; 66(1-2):59-77. PubMed ID: 14516941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur and oxygen isotope fractionation during benzene, toluene, ethyl benzene, and xylene degradation by sulfate-reducing bacteria.
    Knöller K; Vogt C; Richnow HH; Weise SM
    Environ Sci Technol; 2006 Jun; 40(12):3879-85. PubMed ID: 16830556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-well reactive tracer test and stable isotope analysis for determination of microbial activity in a fast hydrocarbon-contaminated aquifer.
    Burbery L; Cassiani G; Andreotti G; Ricchiuto T; Semple KT
    Environ Pollut; 2004 May; 129(2):321-30. PubMed ID: 14987818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Field-scale isotopic labeling of phospholipid fatty acids from acetate-degrading sulfate-reducing bacteria.
    Pombo SA; Kleikemper J; Schroth MH; Zeyer J
    FEMS Microbiol Ecol; 2005 Jan; 51(2):197-207. PubMed ID: 16329868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single well push-pull test method for in situ determination of denitrification rates in a nitrate-contaminated groundwater aquifer.
    Kim Y; Kim JH; Son BH; Oa SW
    Water Sci Technol; 2005; 52(8):77-86. PubMed ID: 16312954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater.
    Van Stempvoort DR; Armstrong J; Mayer B
    J Contam Hydrol; 2007 Jul; 92(3-4):184-207. PubMed ID: 17292997
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfur transformations in pilot-scale constructed wetland treating high sulfate-containing contaminated groundwater: a stable isotope assessment.
    Wu S; Jeschke C; Dong R; Paschke H; Kuschk P; Knöller K
    Water Res; 2011 Dec; 45(20):6688-98. PubMed ID: 22055121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable isotope fractionation related to technically enhanced bacterial sulphate degradation in lignite mining sediments.
    Knöller K; Jeschke C; Simon A; Gast M; Hoth N
    Isotopes Environ Health Stud; 2012; 48(1):76-88. PubMed ID: 22092249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments.
    Habicht KS; Canfield DE
    Geochim Cosmochim Acta; 1997 Dec; 61(24):5351-61. PubMed ID: 11541664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineered and subsequent intrinsic in situ bioremediation of a diesel fuel contaminated aquifer.
    Hunkeler D; Höhener P; Zeyer J
    J Contam Hydrol; 2002 Dec; 59(3-4):231-45. PubMed ID: 12487415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New field method: gas push-pull test for the in-situ quantification of microbial activities in the vadose zone.
    Urmann K; Gonzalez-Gil G; Schroth MH; Hofer M; Zeyer J
    Environ Sci Technol; 2005 Jan; 39(1):304-10. PubMed ID: 15667110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic bioremediation of a petroleum hydrocarbon-contaminated aquifer and assessment of mineralization based on stable carbon isotopes.
    Bolliger C; Höhener P; Hunkeler D; Häberli K; Zeyer J
    Biodegradation; 1999 Jun; 10(3):201-17. PubMed ID: 10492888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary study on sulfate reduction bacteria behaviors in groundwater by sulfur and carbon isotopes: a case study in Jiaozuo City, China.
    Zhang D; Liu C
    Ecotoxicology; 2014 Dec; 23(10):2014-24. PubMed ID: 25150982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.
    Einsiedl F
    Environ Sci Technol; 2009 Jan; 43(1):82-7. PubMed ID: 19209588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer.
    Rios-Hernandez LA; Gieg LM; Suflita JM
    Appl Environ Microbiol; 2003 Jan; 69(1):434-43. PubMed ID: 12514025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial in situ degradation of aromatic hydrocarbons in a contaminated aquifer monitored by carbon isotope fractionation.
    Richnow HH; Annweiler E; Michaelis W; Meckenstock RU
    J Contam Hydrol; 2003 Aug; 65(1-2):101-20. PubMed ID: 12855203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation.
    Druhan JL; Conrad ME; Williams KH; N'Guessan L; Long PE; Hubbard SS
    Environ Sci Technol; 2008 Nov; 42(21):7842-9. PubMed ID: 19031870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.