BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11589972)

  • 1. Structure of Acetobacter cellulose composites in the hydrated state.
    Astley OM; Chanliaud E; Donald AM; Gidley MJ
    Int J Biol Macromol; 2001 Oct; 29(3):193-202. PubMed ID: 11589972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy.
    Kacuráková M; Smith AC; Gidley MJ; Wilson RH
    Carbohydr Res; 2002 Jun; 337(12):1145-53. PubMed ID: 12062530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical properties of primary plant cell wall analogues.
    Chanliaud E; Burrows KM; Jeronimidis G; Gidley MJ
    Planta; 2002 Oct; 215(6):989-96. PubMed ID: 12355159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modification of crystallinity and crystalline structure of Acetobacter xylinum cellulose in the presence of water-soluble beta-1,4-linked polysaccharides: 13C-NMR evidence.
    Hackney JM; Atalla RH; VanderHart DL
    Int J Biol Macromol; 1994 Aug; 16(4):215-8. PubMed ID: 7848969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WAXS and 13C NMR study of Gluconoacetobacter xylinus cellulose in composites with tamarind xyloglucan.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Carbohydr Res; 2008 Feb; 343(2):221-9. PubMed ID: 18048015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.
    Tan MS; Moore SC; Tabor RF; Fegan N; Rahman S; Dykes GA
    BMC Microbiol; 2016 Sep; 16():212. PubMed ID: 27629769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile deformation of bacterial cellulose composites.
    Astley OM; Chanliaud E; Donald AM; Gidley MJ
    Int J Biol Macromol; 2003 Mar; 32(1-2):28-35. PubMed ID: 12719129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of in vitro binding of isolated pectic domains to cellulose by adsorption isotherms, electron microscopy, and X-ray diffraction methods.
    Zykwinska A; Gaillard C; Buléon A; Pontoire B; Garnier C; Thibault JF; Ralet MC
    Biomacromolecules; 2007 Jan; 8(1):223-32. PubMed ID: 17206811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation.
    Mikkelsen D; Lopez-Sanchez P; Wang D; Gidley MJ
    Methods Mol Biol; 2020; 2149():73-87. PubMed ID: 32617930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical architecture of bacterial cellulose and composite plant cell wall polysaccharide hydrogels using small angle neutron scattering.
    Martínez-Sanz M; Gidley MJ; Gilbert EP
    Soft Matter; 2016 Feb; 12(5):1534-49. PubMed ID: 26658920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemicellulose-Cellulose Composites Reveal Differences in Cellulose Organization after Dilute Acid Pretreatment.
    Shah R; Huang S; Pingali SV; Sawada D; Pu Y; Rodriguez M; Ragauskas AJ; Kim SH; Evans BR; Davison BH; O'Neill H
    Biomacromolecules; 2019 Feb; 20(2):893-903. PubMed ID: 30554514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of plant cell wall matrix polysaccharides on bacterial cellulose structure studied with vibrational sum frequency generation spectroscopy and X-ray diffraction.
    Park YB; Lee CM; Kafle K; Park S; Cosgrove DJ; Kim SH
    Biomacromolecules; 2014 Jul; 15(7):2718-24. PubMed ID: 24846814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the contributions of hemicelluloses to assembly and mechanical properties of cellulose networks.
    Zhang W; Yang J; Lu Y; Li M; Peng F; Bian J
    Carbohydr Polym; 2023 Feb; 301(Pt A):120292. PubMed ID: 36436850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemicelluloses as structure regulators in the aggregation of native cellulose.
    Atalla RH; Hackney JM; Uhlin I; Thompson NS
    Int J Biol Macromol; 1993 Apr; 15(2):109-12. PubMed ID: 8485102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grazing-incidence diffraction reveals cellulose and pectin organization in hydrated plant primary cell wall.
    Del Mundo JT; Rongpipi S; Yang H; Ye D; Kiemle SN; Moffitt SL; Troxel CL; Toney MF; Zhu C; Kubicki JD; Cosgrove DJ; Gomez EW; Gomez ED
    Sci Rep; 2023 Apr; 13(1):5421. PubMed ID: 37012389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of glycerol on production and structural-physical properties of cellulose from Acetobacter sp. V6 cultured in shake flasks.
    Jung HI; Jeong JH; Lee OM; Park GT; Kim KK; Park HC; Lee SM; Kim YG; Son HJ
    Bioresour Technol; 2010 May; 101(10):3602-8. PubMed ID: 20080401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcofluor white ST Alters the in vivo assembly of cellulose microfibrils.
    Haigler CH; Brown RM; Benziman M
    Science; 1980 Nov; 210(4472):903-6. PubMed ID: 7434003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Property evaluations of dry-cast reconstituted bacterial cellulose/tamarind xyloglucan biocomposites.
    de Souza CF; Lucyszyn N; Woehl MA; Riegel-Vidotti IC; Borsali R; Sierakowski MR
    Carbohydr Polym; 2013 Mar; 93(1):144-53. PubMed ID: 23465913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for in vitro binding of pectin side chains to cellulose.
    Zykwinska AW; Ralet MC; Garnier CD; Thibault JF
    Plant Physiol; 2005 Sep; 139(1):397-407. PubMed ID: 16126855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Biomacromolecules; 2009 Nov; 10(11):2961-7. PubMed ID: 19817435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.