BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 11589972)

  • 21. Multi-scale model for the hierarchical architecture of native cellulose hydrogels.
    Martínez-Sanz M; Mikkelsen D; Flanagan B; Gidley MJ; Gilbert EP
    Carbohydr Polym; 2016 Aug; 147():542-555. PubMed ID: 27178962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural properties and foaming of plant cell wall polysaccharide dispersions.
    Beatrice CAG; Rosa-Sibakov N; Lille M; Sözer N; Poutanen K; Ketoja JA
    Carbohydr Polym; 2017 Oct; 173():508-518. PubMed ID: 28732894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous influence of pectin and xyloglucan on structure and mechanical properties of bacterial cellulose composites.
    Szymańska-Chargot M; Chylińska M; Cybulska J; Kozioł A; Pieczywek PM; Zdunek A
    Carbohydr Polym; 2017 Oct; 174():970-979. PubMed ID: 28821155
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinspired capsules based on nanocellulose, xyloglucan and pectin - The influence of capsule wall composition on permeability properties.
    Paulraj T; Riazanova AV; Svagan AJ
    Acta Biomater; 2018 Mar; 69():196-205. PubMed ID: 29341931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Non-covalent interaction between procyanidins and apple cell wall material. Part III: Study on model polysaccharides.
    Le Bourvellec C; Bouchet B; Renard CM
    Biochim Biophys Acta; 2005 Aug; 1725(1):10-8. PubMed ID: 16023787
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Examining the contribution of cell wall polysaccharides to the mechanical properties of apple parenchyma tissue using exogenous enzymes.
    Videcoq P; Barbacci A; Assor C; Magnenet V; Arnould O; Le Gall S; Lahaye M
    J Exp Bot; 2017 Nov; 68(18):5137-5146. PubMed ID: 29036637
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavior of freezable bound water in the bacterial cellulose produced by Acetobacter xylinum: an approach using thermoporosimetry.
    Kaewnopparat S; Sansernluk K; Faroongsarng D
    AAPS PharmSciTech; 2008; 9(2):701-7. PubMed ID: 18523890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions of arabinoxylan and (1,3)(1,4)-β-glucan with cellulose networks.
    Mikkelsen D; Flanagan BM; Wilson SM; Bacic A; Gidley MJ
    Biomacromolecules; 2015 Apr; 16(4):1232-9. PubMed ID: 25756836
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing adhesion between nanoscale cellulose fibres using AFM lateral force spectroscopy: The effect of hemicelluloses on hydrogen bonding.
    Dolan GK; Cartwright B; Bonilla MR; Gidley MJ; Stokes JR; Yakubov GE
    Carbohydr Polym; 2019 Mar; 208():97-107. PubMed ID: 30658836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Composition of plant cell walls.
    Heredia A; Jiménez A; Guillén R
    Z Lebensm Unters Forsch; 1995; 200(1):24-31. PubMed ID: 7732730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for covalent linkage between xyloglucan and acidic pectins in suspension-cultured rose cells.
    Thompson JE; Fry SC
    Planta; 2000 Jul; 211(2):275-86. PubMed ID: 10945222
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of Solubility on the Adsorption of Different Xyloglucan Fractions at Cellulose-Water Interfaces.
    Kishani S; Vilaplana F; Ruda M; Hansson P; Wågberg L
    Biomacromolecules; 2020 Feb; 21(2):772-782. PubMed ID: 31790572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A small-angle X-ray scattering study of the effect of hydration on the microstructure of flax fibers.
    Astley OM; Donald AM
    Biomacromolecules; 2001; 2(3):672-80. PubMed ID: 11710020
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of cellulose-based composites with hemicelluloses and pectins using Gluconacetobacter fermentation.
    Mikkelsen D; Gidley MJ
    Methods Mol Biol; 2011; 715():197-208. PubMed ID: 21222086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ORF2 gene involves in the construction of high-order structure of bacterial cellulose.
    Nakai T; Nishiyama Y; Kuga S; Sugano Y; Shoda M
    Biochem Biophys Res Commun; 2002 Jul; 295(2):458-62. PubMed ID: 12150971
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure and dynamics of Brachypodium primary cell wall polysaccharides from two-dimensional (13)C solid-state nuclear magnetic resonance spectroscopy.
    Wang T; Salazar A; Zabotina OA; Hong M
    Biochemistry; 2014 May; 53(17):2840-54. PubMed ID: 24720372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sensing the structural differences in cellulose from apple and bacterial cell wall materials by Raman and FT-IR spectroscopy.
    Szymańska-Chargot M; Cybulska J; Zdunek A
    Sensors (Basel); 2011; 11(6):5543-60. PubMed ID: 22163913
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Influence of culture mode on bacterial cellulose production and its structure and property].
    Zhou LL; Sun DP; Wu QH; Yang JZ; Yang SL
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):914-7. PubMed ID: 18062273
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fractionation of xyloglucan fragments and their interaction with cellulose.
    Vincken JP; de Keizer A; Beldman G; Voragen AG
    Plant Physiol; 1995 Aug; 108(4):1579-85. PubMed ID: 7659752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.