These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 11589973)

  • 1. Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments.
    Riekel C; Vollrath F
    Int J Biol Macromol; 2001 Oct; 29(3):203-10. PubMed ID: 11589973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of CO2 on the micro-structural properties of spider dragline silk: X-ray microdiffraction results.
    Riekel C; Rössle M; Sapede D; Vollrath F
    Naturwissenschaften; 2004 Jan; 91(1):30-3. PubMed ID: 14740101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural studies of spider silk proteins in the fiber.
    Parkhe AD; Seeley SK; Gardner K; Thompson L; Lewis RV
    J Mol Recognit; 1997; 10(1):1-6. PubMed ID: 9179774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructural homogeneity of support silk spun by Eriophora fuliginea (C.L. Koch) determined by scanning X-ray microdiffraction.
    Riekel C; Craig CL; Burghammer M; Müller M
    Naturwissenschaften; 2001 Feb; 88(2):67-72. PubMed ID: 11320890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability in the mechanical properties of spider silks on three levels: interspecific, intraspecific and intraindividual.
    Madsen B; Shao ZZ; Vollrath F
    Int J Biol Macromol; 1999; 24(2-3):301-6. PubMed ID: 10342779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for diet effects on the composition of silk proteins produced by spiders.
    Craig CL; Riekel C; Herberstein ME; Weber RS; Kaplan D; Pierce NE
    Mol Biol Evol; 2000 Dec; 17(12):1904-13. PubMed ID: 11110907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From EST sequence to spider silk spinning: identification and molecular characterisation of Nephila senegalensis major ampullate gland peroxidase NsPox.
    Pouchkina NN; Stanchev BS; McQueen-Mason SJ
    Insect Biochem Mol Biol; 2003 Feb; 33(2):229-38. PubMed ID: 12535681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationships between supercontraction and mechanical properties of spider silk.
    Liu Y; Shao Z; Vollrath F
    Nat Mater; 2005 Dec; 4(12):901-5. PubMed ID: 16299506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural Changes in Spider Dragline Silk after Repeated Supercontraction-Stretching Processes.
    Hu L; Chen Q; Yao J; Shao Z; Chen X
    Biomacromolecules; 2020 Dec; 21(12):5306-5314. PubMed ID: 33206498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspects of X-ray diffraction on single spider fibers.
    Riekel C; Bränden C; Craig C; Ferrero C; Heidelbach F; Müller M
    Int J Biol Macromol; 1999; 24(2-3):179-86. PubMed ID: 10342763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanical design of spider silks: from fibroin sequence to mechanical function.
    Gosline JM; Guerette PA; Ortlepp CS; Savage KN
    J Exp Biol; 1999 Dec; 202(Pt 23):3295-303. PubMed ID: 10562512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein secondary structure of Green Lynx spider dragline silk investigated by solid-state NMR and X-ray diffraction.
    Xu D; Shi X; Thompson F; Weber WS; Mou Q; Yarger JL
    Int J Biol Macromol; 2015 Nov; 81():171-9. PubMed ID: 26226457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and optical studies on selected web spinning spider silks.
    Karthikeyani R; Divya A; Mathavan T; Asath RM; Benial AM; Muthuchelian K
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 170():111-6. PubMed ID: 27423109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformation and orientation of proteins in various types of silk fibers produced by Nephila clavipes spiders.
    Rousseau ME; Lefèvre T; Pézolet M
    Biomacromolecules; 2009 Oct; 10(10):2945-53. PubMed ID: 19785404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray diffraction on spider silk during controlled extrusion under a synchrotron radiation X-ray beam.
    Riekel C; Madsen B; Knight D; Vollrath F
    Biomacromolecules; 2000; 1(4):622-6. PubMed ID: 11710191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of the silk production pathway in the spider Nephila edulis.
    Vollrath F; Knight DP
    Int J Biol Macromol; 1999; 24(2-3):243-9. PubMed ID: 10342771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks.
    Blamires SJ; Kasumovic MM; Tso IM; Martens PJ; Hook JM; Rawal A
    Int J Mol Sci; 2016 Aug; 17(8):. PubMed ID: 27517909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks.
    Sampath S; Isdebski T; Jenkins JE; Ayon JV; Henning RW; Orgel JP; Antipoa O; Yarger JL
    Soft Matter; 2012 Jul; 8(25):6713-6722. PubMed ID: 23569461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lattice deformation and thermal stability of crystals in spider silk.
    Sheu HS; Phyu KW; Jean YC; Chiang YP; Tso IM; Wu HC; Yang JC; Ferng SL
    Int J Biol Macromol; 2004 Oct; 34(5):325-31. PubMed ID: 15556235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spider (Araneus diadematus) cocoon silk: a case of non-periodic lattice crystals with a twist?
    Barghout JY; Thiel BL; Viney C
    Int J Biol Macromol; 1999; 24(2-3):211-7. PubMed ID: 10342767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.