These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 11590064)

  • 1. Seeds for a better future: 'low phytate' grains help to overcome malnutrition and reduce pollution.
    Raboy V
    Trends Plant Sci; 2001 Oct; 6(10):458-62. PubMed ID: 11590064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.
    Iwai T; Takahashi M; Oda K; Terada Y; Yoshida KT
    Plant Physiol; 2012 Dec; 160(4):2007-14. PubMed ID: 23090587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes.
    Dorsch JA; Cook A; Young KA; Anderson JM; Bauman AT; Volkmann CJ; Murthy PP; Raboy V
    Phytochemistry; 2003 Mar; 62(5):691-706. PubMed ID: 12620321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), Barley (Hordeum vulgare L.), and Rice (Oryza sativa L.) assessed in a suckling rat pup model.
    Lönnerdal B; Mendoza C; Brown KH; Rutger JN; Raboy V
    J Agric Food Chem; 2011 May; 59(9):4755-62. PubMed ID: 21417220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241).
    Pilu R; Panzeri D; Gavazzi G; Rasmussen SK; Consonni G; Nielsen E
    Theor Appl Genet; 2003 Oct; 107(6):980-7. PubMed ID: 14523526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbing the metabolic dynamics of myo-inositol in developing Brassica napus seeds through in vivo methylation impacts its utilization as phytate precursor and affects downstream metabolic pathways.
    Dong J; Yan W; Bock C; Nokhrina K; Keller W; Georges F
    BMC Plant Biol; 2013 May; 13():84. PubMed ID: 23692661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of phosphorus compounds in corn processing.
    Noureddini H; Malik M; Byun J; Ankeny AJ
    Bioresour Technol; 2009 Jan; 100(2):731-6. PubMed ID: 18692392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seed targeted RNAi-mediated silencing of GmMIPS1 limits phytate accumulation and improves mineral bioavailability in soybean.
    Kumar A; Kumar V; Krishnan V; Hada A; Marathe A; C P; Jolly M; Sachdev A
    Sci Rep; 2019 May; 9(1):7744. PubMed ID: 31123331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. myo-Inositol-1,2,3,4,5,6-hexakisphosphate.
    Raboy V
    Phytochemistry; 2003 Nov; 64(6):1033-43. PubMed ID: 14568069
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Raboy V
    Plants (Basel); 2020 Jan; 9(2):. PubMed ID: 31979164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis.
    Lee HS; Lee DH; Cho HK; Kim SH; Auh JH; Pai HS
    Plant Cell; 2015 Feb; 27(2):417-31. PubMed ID: 25670768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients.
    Pramitha JL; Rana S; Aggarwal PR; Ravikesavan R; Joel AJ; Muthamilarasan M
    Adv Genet; 2021; 107():89-120. PubMed ID: 33641749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Phytase on in Vitro Hydrolysis of Phytate and the Formation of
    Hirvonen J; Liljavirta J; Saarinen MT; Lehtinen MJ; Ahonen I; Nurminen P
    J Agric Food Chem; 2019 Oct; 67(41):11396-11402. PubMed ID: 31537068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds.
    Sakai H; Iwai T; Matsubara C; Usui Y; Okamura M; Yatou O; Terada Y; Aoki N; Nishida S; Yoshida KT
    Plant Sci; 2015 Sep; 238():170-7. PubMed ID: 26259185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.).
    Yuan FJ; Zhao HJ; Ren XL; Zhu SL; Fu XJ; Shu QY
    Theor Appl Genet; 2007 Nov; 115(7):945-57. PubMed ID: 17701395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds.
    Shi J; Wang H; Hazebroek J; Ertl DS; Harp T
    Plant J; 2005 Jun; 42(5):708-19. PubMed ID: 15918884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of low phytic acid1-7 (lpa1-7), a new ZmMRP4 mutation in maize.
    Cerino Badone F; Amelotti M; Cassani E; Pilu R
    J Hered; 2012 Jul; 103(4):598-605. PubMed ID: 22563127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant.
    Doria E; Galleschi L; Calucci L; Pinzino C; Pilu R; Cassani E; Nielsen E
    J Exp Bot; 2009; 60(3):967-78. PubMed ID: 19204030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.