BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 11590660)

  • 1. EPR oxygen mapping (EPROM) of engineered cartilage grown in a hollow-fiber bioreactor.
    Ellis SJ; Velayutham M; Velan SS; Petersen EF; Zweier JL; Kuppusamy P; Spencer RG
    Magn Reson Med; 2001 Oct; 46(4):819-26. PubMed ID: 11590660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix fixed-charge density as determined by magnetic resonance microscopy of bioreactor-derived hyaline cartilage correlates with biochemical and biomechanical properties.
    Chen CT; Fishbein KW; Torzilli PA; Hilger A; Spencer RG; Horton WE
    Arthritis Rheum; 2003 Apr; 48(4):1047-56. PubMed ID: 12687548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron paramagnetic resonance oxygen mapping (EPROM): direct visualization of oxygen concentration in tissue.
    Velan SS; Spencer RG; Zweier JL; Kuppusamy P
    Magn Reson Med; 2000 Jun; 43(6):804-9. PubMed ID: 10861874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of engineered cartilage tissue to biochemical agents as studied by proton magnetic resonance microscopy.
    Potter K; Butler JJ; Horton WE; Spencer RG
    Arthritis Rheum; 2000 Jul; 43(7):1580-90. PubMed ID: 10902763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 31P NMR spectroscopy of developing cartilage produced from chick chondrocytes in a hollow-fiber bioreactor.
    Petersen EF; Fishbein KW; McFarland EW; Spencer RG
    Magn Reson Med; 2000 Sep; 44(3):367-72. PubMed ID: 10975886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cartilage formation in a hollow fiber bioreactor studied by proton magnetic resonance microscopy.
    Potter K; Butler JJ; Adams C; Fishbein KW; McFarland EW; Horton WE; Spencer RG
    Matrix Biol; 1998 Nov; 17(7):513-23. PubMed ID: 9881603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional electron paramagnetic resonance imaging of ischemic rat heart: Monitoring of tissue oxygenation and pH.
    Gorodetsky AA; Kirilyuk IA; Khramtsov VV; Komarov DA
    Magn Reson Med; 2016 Jul; 76(1):350-8. PubMed ID: 26301868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging of collagen and proteoglycan in cartilage sections using Fourier transform infrared spectral imaging.
    Potter K; Kidder LH; Levin IW; Lewis EN; Spencer RG
    Arthritis Rheum; 2001 Apr; 44(4):846-55. PubMed ID: 11315924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of low oxygen tension on tissue-engineered cartilage construct development in the concentric cylinder bioreactor.
    Saini S; Wick TM
    Tissue Eng; 2004; 10(5-6):825-32. PubMed ID: 15265300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cartilage calcification studied by proton nuclear magnetic resonance microscopy.
    Potter K; Leapman RD; Basser PJ; Landis WJ
    J Bone Miner Res; 2002 Apr; 17(4):652-60. PubMed ID: 11918222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the lattice Boltzmann method simulation of a two-phase flow bioreactor for artificially grown cartilage cells.
    Hussein MA; Esterl S; Pörtner R; Wiegandt K; Becker T
    J Biomech; 2008 Dec; 41(16):3455-61. PubMed ID: 19019373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue engineering of human cartilage and osteochondral composites using recirculation bioreactors.
    Mahmoudifar N; Doran PM
    Biomaterials; 2005 Dec; 26(34):7012-24. PubMed ID: 16039710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage.
    Tran SC; Cooley AJ; Elder SH
    Biotechnol Bioeng; 2011 Jun; 108(6):1421-9. PubMed ID: 21274847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of bioreactor-cultivated bone by magnetic resonance microscopy and FTIR microspectroscopy.
    Chesnick IE; Avallone FA; Leapman RD; Landis WJ; Eidelman N; Potter K
    Bone; 2007 Apr; 40(4):904-12. PubMed ID: 17174620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of oxygen tension and pH in a bioreactor for cartilage tissue engineering.
    Das R; Kreukniet M; Oostra J; van Osch G; Weinans H; Jahr H
    Biomed Mater Eng; 2008; 18(4-5):279-82. PubMed ID: 19065034
    [No Abstract]   [Full Text] [Related]  

  • 16. Developing a Customized Perfusion Bioreactor Prototype with Controlled Positional Variability in Oxygen Partial Pressure for Bone and Cartilage Tissue Engineering.
    Lee PS; Eckert H; Hess R; Gelinsky M; Rancourt D; Krawetz R; Cuniberti G; Scharnweber D
    Tissue Eng Part C Methods; 2017 May; 23(5):286-297. PubMed ID: 28401793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Technical strategies to improve tissue engineering of cartilage-carrier-constructs.
    Pörtner R; Goepfert C; Wiegandt K; Janssen R; Ilinich E; Paetzold H; Eisenbarth E; Morlock M
    Adv Biochem Eng Biotechnol; 2009; 112():145-81. PubMed ID: 19290501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new bioreactor for the controlled application of complex mechanical stimuli for cartilage tissue engineering.
    Laganà K; Moretti M; Dubini G; Raimondi MT
    Proc Inst Mech Eng H; 2008 Jul; 222(5):705-15. PubMed ID: 18756689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioreactor cultivation of three-dimensional cartilage-carrier-constructs.
    Nagel-Heyer S; Goepfert C; Feyerabend F; Petersen JP; Adamietz P; Meenen NM; Pörtner R
    Bioprocess Biosyst Eng; 2005 Jul; 27(4):273-80. PubMed ID: 15928929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering.
    Bilgen B; Sucosky P; Neitzel GP; Barabino GA
    Biotechnol Bioeng; 2006 Dec; 95(6):1009-22. PubMed ID: 17031866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.