BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

653 related articles for article (PubMed ID: 11590748)

  • 1. Uptake and accumulation of copper by roots and shoots of maize (Zea mays L.).
    Liu DH; Jiang WS; Hou WQ
    J Environ Sci (China); 2001 Apr; 13(2):228-32. PubMed ID: 11590748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.).
    Wang M; Zou J; Duan X; Jiang W; Liu D
    Bioresour Technol; 2007 Jan; 98(1):82-8. PubMed ID: 16426846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of NO3- supply on lateral root growth in maize plants].
    Guo YF; Mi GH; Chen FJ; Zhang FS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Feb; 31(1):90-6. PubMed ID: 15692184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.).
    Wang Z; Xie X; Zhao J; Liu X; Feng W; White JC; Xing B
    Environ Sci Technol; 2012 Apr; 46(8):4434-41. PubMed ID: 22435775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper accumulation and tolerance in Chrysanthemum coronarium L. and Sorghum sudanense L.
    Wei L; Luo C; Li X; Shen Z
    Arch Environ Contam Toxicol; 2008 Aug; 55(2):238-46. PubMed ID: 18183449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ability of Agrogyron elongatum to accumulate the single metal of cadmium, copper, nickel and lead and root exudation of organic acids.
    Yang H; Wong JW; Yang ZM; Zhou LX
    J Environ Sci (China); 2001 Jul; 13(3):368-75. PubMed ID: 11590773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper.
    Tanyolaç D; Ekmekçi Y; Unalan S
    Chemosphere; 2007 Feb; 67(1):89-98. PubMed ID: 17109927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.).
    Lin J; Jiang W; Liu DC
    Bioresour Technol; 2003 Jan; 86(2):151-5. PubMed ID: 12653280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Species differences in ligand specificity of auxin-controlled elongation and auxin transport: comparing Zea and Vigna.
    Zhao H; Hertel R; Ishikawa H; Evans ML
    Planta; 2002 Dec; 216(2):293-301. PubMed ID: 12447543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon influence on maize, Zea mays L., hybrids exposed to cadmium treatment.
    Lukacová Kuliková Z; Lux A
    Bull Environ Contam Toxicol; 2010 Sep; 85(3):243-50. PubMed ID: 20563865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils.
    Song J; Zhao FJ; Luo YM; McGrath SP; Zhang H
    Environ Pollut; 2004; 128(3):307-15. PubMed ID: 14720473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aluminum mediates compositional alterations of polar lipid classes in maize seedlings.
    Chaffai R; Marzouk B; El Ferjani E
    Phytochemistry; 2005 Aug; 66(16):1903-12. PubMed ID: 16099483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages.
    Ahmad MS; Ashraf M; Tabassam Q; Hussain M; Firdous H
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1229-39. PubMed ID: 21647755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Availability of ferrocyanide and ferricyanide complexes as a nitrogen source to cyanogenic plants.
    Yu XZ; Gu JD; Li TP
    Arch Environ Contam Toxicol; 2008 Aug; 55(2):229-37. PubMed ID: 18180862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of Trametes versicolor, Coriolopsis rigida and the arbuscular mycorrhizal fungus Glomus deserticola on the copper tolerance of Eucalyptus globulus.
    Arriagada C; Aranda E; Sampedro I; Garcia-Romera I; Ocampo JA
    Chemosphere; 2009 Sep; 77(2):273-8. PubMed ID: 19692112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth, nitrogen uptake and flow in maize plants affected by root growth restriction.
    Xu L; Niu J; Li C; Zhang F
    J Integr Plant Biol; 2009 Jul; 51(7):689-97. PubMed ID: 19566647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.