These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11591148)

  • 1. Kinetic and crystallographic analysis of the key active site acid/base arginine in a soluble fumarate reductase.
    Mowat CG; Moysey R; Miles CS; Leys D; Doherty MK; Taylor P; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2001 Oct; 40(41):12292-8. PubMed ID: 11591148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the active site acid/base catalyst in a bacterial fumarate reductase: a kinetic and crystallographic study.
    Doherty MK; Pealing SL; Miles CS; Moysey R; Taylor P; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2000 Sep; 39(35):10695-701. PubMed ID: 10978153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering water to act as an active site acid catalyst in a soluble fumarate reductase.
    Mowat CG; Pankhurst KL; Miles CS; Leys D; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2002 Oct; 41(40):11990-6. PubMed ID: 12356299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histidine 61: an important heme ligand in the soluble fumarate reductase from Shewanella frigidimarina.
    Rothery EL; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2003 Nov; 42(45):13160-9. PubMed ID: 14609326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of His505 in the soluble fumarate reductase from Shewanella frigidimarina.
    Pankhurst KL; Mowat CG; Miles CS; Leys D; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2002 Jul; 41(27):8551-6. PubMed ID: 12093271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing domain mobility in a flavocytochrome.
    Rothery EL; Mowat CG; Miles CS; Mott S; Walkinshaw MD; Reid GA; Chapman SK
    Biochemistry; 2004 May; 43(17):4983-9. PubMed ID: 15109257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A proton delivery pathway in the soluble fumarate reductase from Shewanella frigidimarina.
    Pankhurst KL; Mowat CG; Rothery EL; Hudson JM; Jones AK; Miles CS; Walkinshaw MD; Armstrong FA; Reid GA; Chapman SK
    J Biol Chem; 2006 Jul; 281(29):20589-97. PubMed ID: 16699170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalysis in fumarate reductase.
    Reid GA; Miles CS; Moysey RK; Pankhurst KL; Chapman SK
    Biochim Biophys Acta; 2000 Aug; 1459(2-3):310-5. PubMed ID: 11004445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of a soluble fumarate reductase from Shewanella frigidimarina: a theoretical study.
    Lucas MF; Ramos MJ
    J Phys Chem B; 2006 Jun; 110(21):10550-6. PubMed ID: 16722766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Open conformation of a flavocytochrome c3 fumarate reductase.
    Bamford V; Dobbin PS; Richardson DJ; Hemmings AM
    Nat Struct Biol; 1999 Dec; 6(12):1104-7. PubMed ID: 10581549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence in support of lysine 77 and histidine 96 as acid-base catalytic residues in saccharopine dehydrogenase from Saccharomyces cerevisiae.
    Kumar VP; Thomas LM; Bobyk KD; Andi B; Cook PF; West AH
    Biochemistry; 2012 Jan; 51(4):857-66. PubMed ID: 22243403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the active site of L-aspartate oxidase by site-directed mutagenesis: role of basic residues in fumarate reduction.
    Tedeschi G; Ronchi S; Simonic T; Treu C; Mattevi A; Negri A
    Biochemistry; 2001 Apr; 40(15):4738-44. PubMed ID: 11294641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme.
    Bohren KM; Grimshaw CE; Lai CJ; Harrison DH; Ringe D; Petsko GA; Gabbay KH
    Biochemistry; 1994 Mar; 33(8):2021-32. PubMed ID: 8117659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis of maintaining an oxidizing environment under anaerobiosis by soluble fumarate reductase.
    Kim S; Kim CM; Son YJ; Choi JY; Siegenthaler RK; Lee Y; Jang TH; Song J; Kang H; Kaiser CA; Park HH
    Nat Commun; 2018 Nov; 9(1):4867. PubMed ID: 30451826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning of functional heme reduction potentials in Shewanella fumarate reductases.
    Pessanha M; Rothery EL; Miles CS; Reid GA; Chapman SK; Louro RO; Turner DL; Salgueiro CA; Xavier AV
    Biochim Biophys Acta; 2009 Feb; 1787(2):113-20. PubMed ID: 19081388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic and crystallographic studies on the active site Arg289Lys mutant of flavocytochrome b2 (yeast L-lactate dehydrogenase).
    Mowat CG; Beaudoin I; Durley RC; Barton JD; Pike AD; Chen ZW; Reid GA; Chapman SK; Mathews FS; Lederer F
    Biochemistry; 2000 Mar; 39(12):3266-75. PubMed ID: 10727218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural and mechanistic mapping of a unique fumarate reductase.
    Taylor P; Pealing SL; Reid GA; Chapman SK; Walkinshaw MD
    Nat Struct Biol; 1999 Dec; 6(12):1108-12. PubMed ID: 10581550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential role of Glu-C66 for menaquinol oxidation indicates transmembrane electrochemical potential generation by Wolinella succinogenes fumarate reductase.
    Lancaster CR; Gorss R; Haas A; Ritter M; Mäntele W; Simon J; Kröger A
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13051-6. PubMed ID: 11186225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox tuning of the catalytic activity of soluble fumarate reductases from Shewanella.
    Paquete CM; Saraiva IH; Louro RO
    Biochim Biophys Acta; 2014 Jun; 1837(6):717-25. PubMed ID: 24530355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.