BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 11591162)

  • 21. Studies on the metabolism of unsaturated fatty acids. XII. Reaction catalyzed by 2,4-dienoyl-CoA reductase of Escherichia coli.
    Mizugaki M; Kimura C; Nishimaki T; Kawaguchi A; Okuda S; Yamanaka H
    J Biochem; 1983 Aug; 94(2):409-13. PubMed ID: 6355075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Purification by affinity chromatography of 2,4-dienoyl-CoA reductases from bovine liver and Escherichia coli.
    Dommes V; Luster W; Cvetanović M; Kunau WH
    Eur J Biochem; 1982 Jul; 125(2):335-41. PubMed ID: 6749495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the acyl-CoAs that accumulate during the peroxisomal beta-oxidation of arachidonic acid and 6,9,12-octadecatrienoic acid.
    Chen Q; Luthria DL; Sprecher H
    Arch Biochem Biophys; 1998 Jan; 349(2):371-5. PubMed ID: 9448727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Birch-like mechanism in enzymatic benzoyl-CoA reduction: a kinetic study of substrate analogues combined with an ab initio model.
    Möbitz H; Boll M
    Biochemistry; 2002 Feb; 41(6):1752-8. PubMed ID: 11827519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Double bond removal from odd-numbered carbons during peroxisomal beta-oxidation of arachidonic acid requires both 2,4-dienoyl-CoA reductase and delta 3,5,delta 2,4-dienoyl-CoA isomerase.
    Luthria DL; Baykousheva SP; Sprecher H
    J Biol Chem; 1995 Jun; 270(23):13771-6. PubMed ID: 7775433
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Studies of human 2,4-dienoyl CoA reductase shed new light on peroxisomal β-oxidation of unsaturated fatty acids.
    Hua T; Wu D; Ding W; Wang J; Shaw N; Liu ZJ
    J Biol Chem; 2012 Aug; 287(34):28956-65. PubMed ID: 22745130
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human liver aldehyde reductase: pH dependence of steady-state kinetic parameters.
    Bhatnagar A; Das B; Liu SQ; Srivastava SK
    Arch Biochem Biophys; 1991 Jun; 287(2):329-36. PubMed ID: 1654814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Proton abstraction reaction, steady-state kinetics, and oxidation-reduction potential of human glutaryl-CoA dehydrogenase.
    Dwyer TM; Rao KS; Goodman SI; Frerman FE
    Biochemistry; 2000 Sep; 39(37):11488-99. PubMed ID: 10985795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The mouse gene PDCR encodes a peroxisomal delta(2), delta(4)-dienoyl-CoA reductase.
    Geisbrecht BV; Liang X; Morrell JC; Schulz H; Gould SJ
    J Biol Chem; 1999 Sep; 274(36):25814-20. PubMed ID: 10464321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 2,4-Dienoyl coenzyme A reductases from bovine liver and Escherichia coli. Comparison of properties.
    Dommes V; Kunau WH
    J Biol Chem; 1984 Feb; 259(3):1781-8. PubMed ID: 6363415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning and expression of the fadH gene and characterization of the gene product 2,4-dienoyl coenzyme A reductase from Escherichia coli.
    He XY; Yang SY; Schulz H
    Eur J Biochem; 1997 Sep; 248(2):516-20. PubMed ID: 9346310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elementary steps in the reaction mechanism of chicken liver fatty acid synthase: beta-ketoacyl reductase and enoyl reductase.
    Cognet JA; Hammes GG
    Biochemistry; 1985 Jan; 24(2):290-7. PubMed ID: 3978075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The activity of 3-hydroxyacyl-CoA epimerase is insufficient to account for the rate of linoleate oxidation in rat heart mitochondria. Evidence for a modified pathway of linoleate degradation.
    Chu CH; Kushner L; Cuebas D; Schulz H
    Biochem Biophys Res Commun; 1984 Jan; 118(1):162-7. PubMed ID: 6696754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The crystal structure of dienoyl-CoA isomerase at 1.5 A resolution reveals the importance of aspartate and glutamate sidechains for catalysis.
    Modis Y; Filppula SA; Novikov DK; Norledge B; Hiltunen JK; Wierenga RK
    Structure; 1998 Aug; 6(8):957-70. PubMed ID: 9739087
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mycobacterium tuberculosis mycothione reductase: pH dependence of the kinetic parameters and kinetic isotope effects.
    Patel MP; Blanchard JS
    Biochemistry; 2001 May; 40(17):5119-26. PubMed ID: 11318633
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterisation of human peroxisomal 2,4-dienoyl-CoA reductase.
    De Nys K; Meyhi E; Mannaerts GP; Fransen M; Van Veldhoven PP
    Biochim Biophys Acta; 2001 Aug; 1533(1):66-72. PubMed ID: 11514237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolism of pent-4-enoate in rat heart. Reduction of the double bond.
    Hiltunen JK; Davis EJ
    Biochem J; 1981 Feb; 194(2):427-32. PubMed ID: 7305999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis.
    Nidetzky B; Klimacek M; Mayr P
    Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for a modified pathway of linoleate degradation. Metabolism of 2,4-decadienoyl coenzyme A.
    Cuebas D; Schulz H
    J Biol Chem; 1982 Dec; 257(23):14140-4. PubMed ID: 7142199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mycobacterium tuberculosis beta-ketoacyl-ACP reductase: alpha-secondary kinetic isotope effects and kinetic and equilibrium mechanisms of substrate binding.
    Silva RG; Rosado LA; Santos DS; Basso LA
    Arch Biochem Biophys; 2008 Mar; 471(1):1-10. PubMed ID: 18155153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.