BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 11591162)

  • 41. Studies on the metabolism of unsaturated fatty acids. IX. Stereochemical studies of the reaction catalyzed by trans-2-enoyl-coenzyme A reductase of Escherichia coli.
    Mizugaki M; Nishimaki T; Shiraishi T; Kawaguchi A; Okuda S; Yamanaka H
    J Biochem; 1982 Nov; 92(5):1649-54. PubMed ID: 6759504
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hydrogen transfer by NADPH-dependent reductases in elongation of very-long-chain saturated and polyunsaturated fatty-acyl-CoA in swine cerebral microsomes.
    Yoshida S; Saitoh T; Takeshita M
    Biochim Biophys Acta; 1988 Feb; 958(3):361-7. PubMed ID: 3342246
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of growth hormone on fatty acid oxidation: growth hormone increases the activity of 2,4-dienoyl-CoA reductase in mitochondria.
    Clejan S; Schulz H
    Arch Biochem Biophys; 1986 May; 246(2):820-8. PubMed ID: 3707134
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Purification of NADPH-dependent enoyl-CoA reductase involved in the malonyl-CoA dependent fatty acid elongation system of Mycobacterium smegmatis.
    Kikuchi S; Kusaka T
    J Biochem; 1984 Sep; 96(3):841-8. PubMed ID: 6501266
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuronal nitric oxide synthase: substrate and solvent kinetic isotope effects on the steady-state kinetic parameters for the reduction of 2,6-dichloroindophenol and cytochrome c(3+).
    Wolthers KR; Schimerlik MI
    Biochemistry; 2002 Jan; 41(1):196-204. PubMed ID: 11772017
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions.
    van Roermund CW; Hettema EH; Kal AJ; van den Berg M; Tabak HF; Wanders RJ
    EMBO J; 1998 Feb; 17(3):677-87. PubMed ID: 9450993
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondrial 2,4-dienoyl-CoA reductases in the rat: differential responses to clofibrate treatment.
    Hakkola EH; Hiltunen JK; Autio-Harmainen HI
    J Lipid Res; 1994 Oct; 35(10):1820-8. PubMed ID: 7852859
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanism of action of glutaryl-CoA and butyryl-CoA dehydrogenases. Purification of glutaryl-CoA dehydrogenase.
    Gomes B; Fendrich G; Abeles RH
    Biochemistry; 1981 Mar; 20(6):1481-90. PubMed ID: 6261796
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The crystal structure and reaction mechanism of Escherichia coli 2,4-dienoyl-CoA reductase.
    Hubbard PA; Liang X; Schulz H; Kim JJ
    J Biol Chem; 2003 Sep; 278(39):37553-60. PubMed ID: 12840019
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Expression, purification, and characterization of His-tagged human mitochondrial 2,4-dienoyl-CoA reductase.
    Chu X; Yu W; Chen G; Li D
    Protein Expr Purif; 2003 Oct; 31(2):292-7. PubMed ID: 14550650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Studies on the metabolism of unsaturated fatty acids. XVI. Purification and general properties of 2,4-dienoyl-CoA reductase from Candida lipolytica.
    Mizugaki M; Koeda N; Kondo A; Kimura C; Yamanaka H
    J Biochem; 1985 Mar; 97(3):837-43. PubMed ID: 4019437
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kinetic and mechanistic analysis of the E. coli panE-encoded ketopantoate reductase.
    Zheng R; Blanchard JS
    Biochemistry; 2000 Apr; 39(13):3708-17. PubMed ID: 10736170
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Studies of human mitochondrial 2,4-dienoyl-CoA reductase.
    Yu W; Chu X; Chen G; Li D
    Arch Biochem Biophys; 2005 Feb; 434(1):195-200. PubMed ID: 15629123
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis.
    Hoffmeister M; Piotrowski M; Nowitzki U; Martin W
    J Biol Chem; 2005 Feb; 280(6):4329-38. PubMed ID: 15569691
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic functions of the two pathways of oleate beta-oxidation double bond metabolism during the beta-oxidation of oleic acid in rat heart mitochondria.
    Ren Y; Schulz H
    J Biol Chem; 2003 Jan; 278(1):111-6. PubMed ID: 12397064
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biochemical effects of the hypoglycaemic compound pent-4-enoic acid and related non-hypoglycaemic fatty acids. Effects of their coenzyme A esters on enzymes of fatty acid oxidation.
    Holland PC; Senior AE; Sherratt HS
    Biochem J; 1973 Sep; 136(1):173-84. PubMed ID: 4797895
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Peroxisomes contain delta 3,5,delta 2,4-dienoyl-CoA isomerase and thus possess all enzymes required for the beta-oxidation of unsaturated fatty acids by a novel reductase-dependent pathway.
    He XY; Shoukry K; Chu C; Yang J; Sprecher H; Schulz H
    Biochem Biophys Res Commun; 1995 Oct; 215(1):15-22. PubMed ID: 7575583
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of metabolic fluxes of cis-5-enoyl-CoA and saturated acyl-CoA through the beta-oxidation pathway.
    Tserng KY; Chen LS; Jin SJ
    Biochem J; 1995 Apr; 307 ( Pt 1)(Pt 1):23-8. PubMed ID: 7717980
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy.
    Wu J; Bell AF; Luo L; Stephens AW; Stankovich MT; Tonge PJ
    Biochemistry; 2003 Oct; 42(40):11846-56. PubMed ID: 14529297
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.