BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 115916)

  • 1. Genetic control of experimental autoimmune myasthenia gravis in mice. I. Lymphocyte proliferative response to acetylcholine receptors is under H-2-linked Ir gene control.
    Christadoss P; Lennon VA; David C
    J Immunol; 1979 Dec; 123(6):2540-3. PubMed ID: 115916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic control of experimental autoimmune myasthenia gravis in mice. III. Ia molecules mediate cellular immune responsiveness to acetylcholine receptors.
    Christadoss P; Lennon VA; Krco CJ; David CS
    J Immunol; 1982 Mar; 128(3):1141-4. PubMed ID: 6799570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic control of experimental autoimmune myasthenia gravis in mice. II. Lymphocyte proliferative response to acetylcholine receptor is dependent on Lyt-1+23- cells.
    Christadoss P; Krco CJ; Lennon VA; David CS
    J Immunol; 1981 Apr; 126(4):1646-7. PubMed ID: 7204982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis.
    Kaul R; Shenoy M; Goluszko E; Christadoss P
    J Immunol; 1994 Mar; 152(6):3152-7. PubMed ID: 8144909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic regulation of the immune response to hepatitis B surface antigen (HBsAg). V. T cell proliferative response and cellular interactions.
    Milich DR; Louie RE; Chisari FV
    J Immunol; 1985 Jun; 134(6):4194-202. PubMed ID: 3921619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immune response gene control of determinant selection. II. Genetic control of the murine T lymphocyte proliferative response to insulin.
    Rosenwasser LJ; Barcinski MA; Schwartz RH; Rosenthal AS
    J Immunol; 1979 Jul; 123(1):471-6. PubMed ID: 87482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lymphocyte activation in experimental autoimmune myasthenia gravis.
    De Baets MH; Einarson B; Lindstrom JM; Weigle WO
    J Immunol; 1982 May; 128(5):2228-35. PubMed ID: 6977589
    [No Abstract]   [Full Text] [Related]  

  • 8. A single monoclonal anti-Ia antibody inhibits antigen-specific T cell proliferation controlled by distinct Ir genes mapping in different H-2 I subregions.
    Germain RN; Bhattacharya A; Dorf ME; Springer TA
    J Immunol; 1982 Mar; 128(3):1409-13. PubMed ID: 6173436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determinant selection in murine experimental autoimmune myasthenia gravis. Effect of the bm12 mutation on T cell recognition of acetylcholine receptor epitopes.
    Infante AJ; Thompson PA; Krolick KA; Wall KA
    J Immunol; 1991 May; 146(9):2977-82. PubMed ID: 1707927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic control of autoimmunity to acetylcholine receptors: role of Ia molecules.
    Christadoss P; Lennon VA; Krco CJ; Lambert EH; David CS
    Ann N Y Acad Sci; 1981; 377():258-77. PubMed ID: 6803646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TCR gene usage in experimental autoimmune myasthenia gravis pathogenesis. Usage of multiple TCRBV genes in the H-2b strains.
    Wu B; Shenoy M; Goluszko E; Kaul R; Christadoss P
    J Immunol; 1995 Apr; 154(7):3603-10. PubMed ID: 7897239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic control of contact hypersensitivity. I. I-A subregion as well as non-H-2 loci codes for the gene of 2,4-dinitro-1-fluorobenzene antigen.
    Okuda K; Ishii N; Ikezawa Z; Tani K; Ishigatsubo Y
    Eur J Immunol; 1980 Dec; 10(12):969-71. PubMed ID: 6781912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional differentiation in the genetic control of murine T lymphocyte responses to human fibrinopeptide B.
    Peterson LB; Wilner GD; Thomas DW
    J Immunol; 1983 Feb; 130(2):637-43. PubMed ID: 6217245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The autoimmune response of different mouse strains to T-cell epitopes of the human acetylcholine receptor alpha subunit.
    Brocke S; Dayan M; Rothbard J; Fuchs S; Mozes E
    Immunology; 1990 Apr; 69(4):495-500. PubMed ID: 1692300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic control of the T lymphocyte proliferative response to staphylococcal nuclease: evidence for multiple MHC-linked Ir gene control.
    Schwartz RH; Berzofsky JA; Horton CL; Schechter AN; Sachs DH
    J Immunol; 1978 May; 120(5):1741-9. PubMed ID: 307022
    [No Abstract]   [Full Text] [Related]  

  • 16. H-2-linked Ir gene control of T cell recognition of the Sm nuclear autoantigen and the aberrant response of autoimmune MRL/Mp-+/+ mice.
    Bernard NF; Eisenberg RA; Cohen PL
    J Immunol; 1985 Jun; 134(6):3812-8. PubMed ID: 3921612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of amino acid substitutions within the region 62-76 of I-A beta b on binding with and antigen presentation of Torpedo acetylcholine receptor alpha-chain peptide 146-162.
    Oshima M; Atassi MZ
    J Immunol; 1995 May; 154(10):5245-54. PubMed ID: 7537303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential use of a T cell receptor V beta gene by acetylcholine receptor reactive T cells from myasthenia gravis-susceptible mice.
    Infante AJ; Levcovitz H; Gordon V; Wall KA; Thompson PA; Krolick KA
    J Immunol; 1992 Jun; 148(11):3385-90. PubMed ID: 1375242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AKR/J gene(s) unlinked to H-2 determines dominant inheritance of lymphocyte hyporesponsiveness to acetylcholine receptor.
    Gorzynski TJ; Lennon VA; Nathanson RM; David CS
    J Immunol; 1985 Apr; 134(4):2079-83. PubMed ID: 3919088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope.
    Atassi MZ; Oshima M; Deitiker P
    Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.