These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 11592621)

  • 1. Formation of a direction map by projection learning using Kohonen's self-organization map.
    Shouno H; Kurata K
    Biol Cybern; 2001 Oct; 85(4):241-6. PubMed ID: 11592621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic map of direction preference in primary visual cortex.
    Weliky M; Bosking WH; Fitzpatrick D
    Nature; 1996 Feb; 379(6567):725-8. PubMed ID: 8602218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis of orientation and ocular dominance patterns in the visual cortex of cats and ferrets.
    Müller T; Stetter M; Hübener M; Sengpiel F; Bonhoeffer T; Gödecke I; Chapman B; Löwel S; Obermayer K
    Neural Comput; 2000 Nov; 12(11):2573-95. PubMed ID: 11110128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning-regulated context relevant topographical map.
    Hartono P; Hollensen P; Trappenberg T
    IEEE Trans Neural Netw Learn Syst; 2015 Oct; 26(10):2323-35. PubMed ID: 25546864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pinwheel patterns give rise to the direction selectivity of complex cells in the primary visual cortex.
    Yao X; Jin L; Hu H
    Brain Res; 2007 Sep; 1170():140-6. PubMed ID: 17719018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic cluster detection in Kohonen's SOM.
    Brugger D; Bogdan M; Rosenstiel W
    IEEE Trans Neural Netw; 2008 Mar; 19(3):442-59. PubMed ID: 18334364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural networks for feature extraction and multivariate data projection.
    Mao J; Jain AK
    IEEE Trans Neural Netw; 1995; 6(2):296-317. PubMed ID: 18263314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An adaptive learning approach for 3-D surface reconstruction from point clouds.
    Junior Ade M; Neto AD; de Melo JD; Goncalves LM
    IEEE Trans Neural Netw; 2008 Jun; 19(6):1130-40. PubMed ID: 18541509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growing a hypercubical output space in a self-organizing feature map.
    Bauer HU; Villmann T
    IEEE Trans Neural Netw; 1997; 8(2):218-26. PubMed ID: 18255626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for learning topographically organized parts-based representations of objects in visual cortex: topographic nonnegative matrix factorization.
    Hosoda K; Watanabe M; Wersing H; Körner E; Tsujino H; Tamura H; Fujita I
    Neural Comput; 2009 Sep; 21(9):2605-33. PubMed ID: 19548799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning Slowness in a Sparse Model of Invariant Feature Detection.
    Chandrapala TN; Shi BE
    Neural Comput; 2015 Jul; 27(7):1496-529. PubMed ID: 25973550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A SOM projection technique with the growing structure for visualizing high-dimensional data.
    Wu Z; Yen GG
    Int J Neural Syst; 2003 Oct; 13(5):353-65. PubMed ID: 14652875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auto-SOM: recursive parameter estimation for guidance of self-organizing feature maps.
    Haese K; Goodhill GJ
    Neural Comput; 2001 Mar; 13(3):595-619. PubMed ID: 11244557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The new and computationally efficient MIL-SOM algorithm: potential benefits for visualization and analysis of a large-scale high-dimensional clinically acquired geographic data.
    Oyana TJ; Achenie LE; Heo J
    Comput Math Methods Med; 2012; 2012():683265. PubMed ID: 22481977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast algorithm and implementation of dissimilarity self-organizing maps.
    Conan-Guez B; Rossi F; El Golli A
    Neural Netw; 2006; 19(6-7):855-63. PubMed ID: 16774730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of restricted orientation rearing on map structure in primary visual cortex.
    Giacomantonio CE; Ibbotson MR; Goodhill GJ
    Neuroimage; 2010 Sep; 52(3):875-83. PubMed ID: 20035888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient self-organizing map designed by genetic algorithms for the traveling salesman problem.
    Jin HD; Leung KS; Wong ML; Xu ZB
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(6):877-88. PubMed ID: 18238240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of imbalance in activities between ON- and OFF-center LGN cells on orientation map formation.
    Nakagama H; Saito T; Tanaka S
    Biol Cybern; 2000 Aug; 83(2):85-92. PubMed ID: 10966048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Centroid neural network for unsupervised competitive learning.
    Park DC
    IEEE Trans Neural Netw; 2000; 11(2):520-8. PubMed ID: 18249781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organisation in Kohonen's SOM.
    Flanagan JA
    Neural Netw; 1996 Oct; 9(7):1185-1197. PubMed ID: 12662592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.