BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

518 related articles for article (PubMed ID: 11592965)

  • 1. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis.
    Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH
    J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast V-ATPase complexes containing different isoforms of the 100-kDa a-subunit differ in coupling efficiency and in vivo dissociation.
    Kawasaki-Nishi S; Nishi T; Forgac M
    J Biol Chem; 2001 May; 276(21):17941-8. PubMed ID: 11278748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reconstructed ancestral subunit a functions as both V-ATPase isoforms Vph1p and Stv1p in Saccharomyces cerevisiae.
    Finnigan GC; Hanson-Smith V; Houser BD; Park HJ; Stevens TH
    Mol Biol Cell; 2011 Sep; 22(17):3176-91. PubMed ID: 21737673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorting of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase): identification of a necessary and sufficient Golgi/endosomal retention signal in Stv1p.
    Finnigan GC; Cronan GE; Park HJ; Srinivasan S; Quiocho FA; Stevens TH
    J Biol Chem; 2012 Jun; 287(23):19487-500. PubMed ID: 22496448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular environment is important in controlling V-ATPase dissociation and its dependence on activity.
    Qi J; Forgac M
    J Biol Chem; 2007 Aug; 282(34):24743-51. PubMed ID: 17565997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p.
    Manolson MF; Wu B; Proteau D; Taillon BE; Roberts BT; Hoyt MA; Jones EW
    J Biol Chem; 1994 May; 269(19):14064-74. PubMed ID: 7514599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast.
    Smardon AM; Diab HI; Tarsio M; Diakov TT; Nasab ND; West RW; Kane PM
    Mol Biol Cell; 2014 Feb; 25(3):356-67. PubMed ID: 24307682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Function and subunit interactions of the N-terminal domain of subunit a (Vph1p) of the yeast V-ATPase.
    Qi J; Forgac M
    J Biol Chem; 2008 Jul; 283(28):19274-82. PubMed ID: 18492665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of the nonhomologous region of subunit A of the yeast V-ATPase in coupling and in vivo dissociation.
    Shao E; Forgac M
    J Biol Chem; 2004 Nov; 279(47):48663-70. PubMed ID: 15355963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of yeast V-ATPase mutants lacking Vph1p or Stv1p and the effect on endocytosis.
    Perzov N; Padler-Karavani V; Nelson H; Nelson N
    J Exp Biol; 2002 May; 205(Pt 9):1209-19. PubMed ID: 11948198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deletion of vacuolar proton-translocating ATPase V(o)a isoforms clarifies the role of vacuolar pH as a determinant of virulence-associated traits in Candida albicans.
    Raines SM; Rane HS; Bernardo SM; Binder JL; Lee SA; Parra KJ
    J Biol Chem; 2013 Mar; 288(9):6190-201. PubMed ID: 23316054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The amino-terminal domain of the E subunit of vacuolar H(+)-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function.
    Lu M; Vergara S; Zhang L; Holliday LS; Aris J; Gluck SL
    J Biol Chem; 2002 Oct; 277(41):38409-15. PubMed ID: 12163484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural analysis of the N-terminal domain of subunit a of the yeast vacuolar ATPase (V-ATPase) using accessibility of single cysteine substitutions to chemical modification.
    Liberman R; Cotter K; Baleja JD; Forgac M
    J Biol Chem; 2013 Aug; 288(31):22798-808. PubMed ID: 23740254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase.
    Leng XH; Manolson MF; Liu Q; Forgac M
    J Biol Chem; 1996 Sep; 271(37):22487-93. PubMed ID: 8798414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of the N-terminal domain of subunit H (Vma13p) of the yeast vacuolar ATPase.
    Flannery AR; Stevens TH
    J Biol Chem; 2008 Oct; 283(43):29099-108. PubMed ID: 18708638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defective assembly of a hybrid vacuolar H(+)-ATPase containing the mouse testis-specific E1 isoform and yeast subunits.
    Hayashi K; Sun-Wada GH; Wada Y; Nakanishi-Matsui M; Futai M
    Biochim Biophys Acta; 2008 Oct; 1777(10):1370-7. PubMed ID: 18662668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural comparison of the vacuolar and Golgi V-ATPases from
    Vasanthakumar T; Bueler SA; Wu D; Beilsten-Edmands V; Robinson CV; Rubinstein JL
    Proc Natl Acad Sci U S A; 2019 Apr; 116(15):7272-7277. PubMed ID: 30910982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arg-735 of the 100-kDa subunit a of the yeast V-ATPase is essential for proton translocation.
    Kawasaki-Nishi S; Nishi T; Forgac M
    Proc Natl Acad Sci U S A; 2001 Oct; 98(22):12397-402. PubMed ID: 11592980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and functional separation of the N- and C-terminal domains of the yeast V-ATPase subunit H.
    Liu M; Tarsio M; Charsky CM; Kane PM
    J Biol Chem; 2005 Nov; 280(44):36978-85. PubMed ID: 16141210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of the late endo-lysosomal lipid PI(3,5)P2 with the Vph1 isoform of yeast V-ATPase increases its activity and cellular stress tolerance.
    Banerjee S; Clapp K; Tarsio M; Kane PM
    J Biol Chem; 2019 Jun; 294(23):9161-9171. PubMed ID: 31023825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.