BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 11593004)

  • 21. [Characteristics of the myeloperoxidase-dependent bactericidal system of blood neutrophil granulocytes in patients with suppurative-septic diseases].
    Tumasova EP
    Klin Khir; 1997; (9-10):42-3. PubMed ID: 9511329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of brominating intermediates by myeloperoxidase. A transhalogenation pathway for generating mutagenic nucleobases during inflammation.
    Henderson JP; Byun J; Williams MV; Mueller DM; McCormick ML; Heinecke JW
    J Biol Chem; 2001 Mar; 276(11):7867-75. PubMed ID: 11096071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vitamin C fails to protect amino acids and lipids from oxidation during acute inflammation.
    Gaut JP; Belaaouaj A; Byun J; Roberts LJ; Maeda N; Frei B; Heinecke JW
    Free Radic Biol Med; 2006 May; 40(9):1494-501. PubMed ID: 16632110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neutrophils convert tyrosyl residues in albumin to chlorotyrosine.
    Kettle AJ
    FEBS Lett; 1996 Jan; 379(1):103-6. PubMed ID: 8566218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of chlorination of monochlorodimedone by myeloperoxidase.
    Jerlich A; Tschabuschnig S; Fabjan JS; Schaur RJ
    Int J Clin Lab Res; 2000; 30(1):33-7. PubMed ID: 10984130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. pH-dependent regulation of myeloperoxidase activity.
    Vlasova II; Arnhold J; Osipov AN; Panasenko OM
    Biochemistry (Mosc); 2006 Jun; 71(6):667-77. PubMed ID: 16827659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of 3-chlorotyrosine in proteins exposed to neutrophil oxidants.
    Kettle AJ
    Methods Enzymol; 1999; 300():111-20. PubMed ID: 9919515
    [No Abstract]   [Full Text] [Related]  

  • 28. Measuring chlorine bleach in biology and medicine.
    Kettle AJ; Albrett AM; Chapman AL; Dickerhof N; Forbes LV; Khalilova I; Turner R
    Biochim Biophys Acta; 2014 Feb; 1840(2):781-93. PubMed ID: 23872351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Myeloperoxidase: a target for new drug development?
    Malle E; Furtmüller PG; Sattler W; Obinger C
    Br J Pharmacol; 2007 Nov; 152(6):838-54. PubMed ID: 17592500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetaminophen (paracetamol) inhibits myeloperoxidase-catalyzed oxidant production and biological damage at therapeutically achievable concentrations.
    Koelsch M; Mallak R; Graham GG; Kajer T; Milligan MK; Nguyen LQ; Newsham DW; Keh JS; Kettle AJ; Scott KF; Ziegler JB; Pattison DI; Fu S; Hawkins CL; Rees MD; Davies MJ
    Biochem Pharmacol; 2010 Apr; 79(8):1156-64. PubMed ID: 19968966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Myeloperoxidase-catalyzed 3-chlorotyrosine formation in dialysis patients.
    Himmelfarb J; McMenamin ME; Loseto G; Heinecke JW
    Free Radic Biol Med; 2001 Nov; 31(10):1163-9. PubMed ID: 11705694
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage.
    Schürmann N; Forrer P; Casse O; Li J; Felmy B; Burgener AV; Ehrenfeuchter N; Hardt WD; Recher M; Hess C; Tschan-Plessl A; Khanna N; Bumann D
    Nat Microbiol; 2017 Jan; 2():16268. PubMed ID: 28112722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury.
    Kubota K; Saiwai H; Kumamaru H; Maeda T; Ohkawa Y; Aratani Y; Nagano T; Iwamoto Y; Okada S
    Spine (Phila Pa 1976); 2012 Jul; 37(16):1363-9. PubMed ID: 22322369
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of mono- and dichlorinated tyrosines with carbonyls for detection of hypochlorous acid modified proteins.
    Chapman AL; Senthilmohan R; Winterbourn CC; Kettle AJ
    Arch Biochem Biophys; 2000 May; 377(1):95-100. PubMed ID: 10775446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High plasma thiocyanate levels modulate protein damage induced by myeloperoxidase and perturb measurement of 3-chlorotyrosine.
    Talib J; Pattison DI; Harmer JA; Celermajer DS; Davies MJ
    Free Radic Biol Med; 2012 Jul; 53(1):20-9. PubMed ID: 22609005
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 8-Nitro-2'-deoxyguanosine, a specific marker of oxidation by reactive nitrogen species, is generated by the myeloperoxidase-hydrogen peroxide-nitrite system of activated human phagocytes.
    Byun J; Henderson JP; Mueller DM; Heinecke JW
    Biochemistry; 1999 Feb; 38(8):2590-600. PubMed ID: 10029554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactions and reactivity of myeloperoxidase-derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids.
    Pattison DI; Davies MJ; Hawkins CL
    Free Radic Res; 2012 Aug; 46(8):975-95. PubMed ID: 22348603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells.
    Rayner BS; Love DT; Hawkins CL
    Free Radic Biol Med; 2014 Jun; 71():240-255. PubMed ID: 24632382
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Pteridine-dependent oxygen activation in neutrophils].
    Petukh MG; Semenkova GN; Fuchs D; Cherenkevich SN
    Tsitologiia; 2009; 51(10):824-9. PubMed ID: 19950861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3-Chlorotyrosine as a marker of protein damage by myeloperoxidase in tracheal aspirates from preterm infants: association with adverse respiratory outcome.
    Buss IH; Senthilmohan R; Darlow BA; Mogridge N; Kettle AJ; Winterbourn CC
    Pediatr Res; 2003 Mar; 53(3):455-62. PubMed ID: 12595594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.