BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

536 related articles for article (PubMed ID: 11593041)

  • 1. SNARE-complex disassembly by NSF follows synaptic-vesicle fusion.
    Littleton JT; Barnard RJ; Titus SA; Slind J; Chapman ER; Ganetzky B
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):12233-8. PubMed ID: 11593041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic interaction between shibire and comatose mutations in Drosophila suggest a role for snap-receptor complex assembly and disassembly for maintenance of synaptic vesicle cycling.
    Sanyal S; Tolar LA; Pallanck L; Krishnan KS
    Neurosci Lett; 2001 Sep; 311(1):21-4. PubMed ID: 11585558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NSF function in neurotransmitter release involves rearrangement of the SNARE complex downstream of synaptic vesicle docking.
    Tolar LA; Pallanck L
    J Neurosci; 1998 Dec; 18(24):10250-6. PubMed ID: 9852562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An NSF function distinct from ATPase-dependent SNARE disassembly is essential for Golgi membrane fusion.
    Müller JM; Rabouille C; Newman R; Shorter J; Freemont P; Schiavo G; Warren G; Shima DT
    Nat Cell Biol; 1999 Oct; 1(6):335-40. PubMed ID: 10559959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of NSF mutants reveals residues involved in SNAP binding and ATPase stimulation.
    Horsnell WG; Steel GJ; Morgan A
    Biochemistry; 2002 Apr; 41(16):5230-5. PubMed ID: 11955072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disassembly of membrane-associated NSF 20S complexes is slow relative to vesicle fusion and is Ca(2+)-independent.
    Swanton E; Bishop N; Sheehan J; High S; Woodman P
    J Cell Sci; 2000 May; 113 ( Pt 10)():1783-91. PubMed ID: 10769209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dominant-negative NSF2 disrupts the structure and function of Drosophila neuromuscular synapses.
    Stewart BA; Mohtashami M; Rivlin P; Deitcher DL; Trimble WS; Boulianne GL
    J Neurobiol; 2002 Jun; 51(4):261-71. PubMed ID: 12150502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.
    Söllner T; Bennett MK; Whiteheart SW; Scheller RH; Rothman JE
    Cell; 1993 Nov; 75(3):409-18. PubMed ID: 8221884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clostridial neurotoxins compromise the stability of a low energy SNARE complex mediating NSF activation of synaptic vesicle fusion.
    Pellegrini LL; O'Connor V; Lottspeich F; Betz H
    EMBO J; 1995 Oct; 14(19):4705-13. PubMed ID: 7588600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequential SNARE disassembly and GATE-16-GOS-28 complex assembly mediated by distinct NSF activities drives Golgi membrane fusion.
    Muller JM; Shorter J; Newman R; Deinhardt K; Sagiv Y; Elazar Z; Warren G; Shima DT
    J Cell Biol; 2002 Jun; 157(7):1161-73. PubMed ID: 12070132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic analysis of soluble N-ethylmaleimide-sensitive factor attachment protein function in Drosophila reveals positive and negative secretory roles.
    Babcock M; Macleod GT; Leither J; Pallanck L
    J Neurosci; 2004 Apr; 24(16):3964-73. PubMed ID: 15102912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation and turnover of NSF- and SNAP-containing "fusion" complexes occur on undocked, clathrin-coated vesicle-derived membranes.
    Swanton E; Sheehan J; Bishop N; High S; Woodman P
    Mol Biol Cell; 1998 Jul; 9(7):1633-47. PubMed ID: 9658160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical analysis of the Saccharomyces cerevisiae SEC18 gene product: implications for the molecular mechanism of membrane fusion.
    Steel GJ; Laude AJ; Boojawan A; Harvey DJ; Morgan A
    Biochemistry; 1999 Jun; 38(24):7764-72. PubMed ID: 10387016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SNAREpins are functionally resistant to disruption by NSF and alphaSNAP.
    Weber T; Parlati F; McNew JA; Johnston RJ; Westermann B; Söllner TH; Rothman JE
    J Cell Biol; 2000 May; 149(5):1063-72. PubMed ID: 10831610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-dependent dissociation of synaptotagmin from synaptic SNARE complexes.
    Leveque C; Boudier JA; Takahashi M; Seagar M
    J Neurochem; 2000 Jan; 74(1):367-74. PubMed ID: 10617141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mast cell degranulation requires N-ethylmaleimide-sensitive factor-mediated SNARE disassembly.
    Puri N; Kruhlak MJ; Whiteheart SW; Roche PA
    J Immunol; 2003 Nov; 171(10):5345-52. PubMed ID: 14607937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the mutant Drosophila N-ethylmaleimide sensitive fusion-1 protein in comatose reveals molecular correlates of the behavioural paralysis.
    Mohtashami M; Stewart BA; Boulianne GL; Trimble WS
    J Neurochem; 2001 Jun; 77(5):1407-17. PubMed ID: 11389191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of synaptic vesicle exocytosis.
    Lin RC; Scheller RH
    Annu Rev Cell Dev Biol; 2000; 16():19-49. PubMed ID: 11031229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct Functions of Syntaxin-1 in Neuronal Maintenance, Synaptic Vesicle Docking, and Fusion in Mouse Neurons.
    Vardar G; Chang S; Arancillo M; Wu YJ; Trimbuch T; Rosenmund C
    J Neurosci; 2016 Jul; 36(30):7911-24. PubMed ID: 27466336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis.
    Banerjee A; Barry VA; DasGupta BR; Martin TF
    J Biol Chem; 1996 Aug; 271(34):20223-6. PubMed ID: 8702750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.