These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 1159472)
1. Neural repetitive firing: a comparative study of membrane properties of crustacean walking leg axons. Connor JA J Neurophysiol; 1975 Jul; 38(4):922-32. PubMed ID: 1159472 [TBL] [Abstract][Full Text] [Related]
2. Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Connor JA; Walter D; McKown R Biophys J; 1977 Apr; 18(1):81-102. PubMed ID: 856318 [TBL] [Abstract][Full Text] [Related]
3. Slow repetitive activity from fast conductance changes in neurons. Connor JA Fed Proc; 1978 Jun; 37(8):2139-45. PubMed ID: 658453 [TBL] [Abstract][Full Text] [Related]
4. Currents under voltage clamp of burst-forming neurons of the cardiac ganglion of the lobster (Homarus americanus). Tazaki K; Cooke IM J Neurophysiol; 1986 Dec; 56(6):1739-62. PubMed ID: 2433414 [TBL] [Abstract][Full Text] [Related]
5. Force-sensitive mechanoreceptors of the dactyl of the crab: single-unit responses during walking and evaluation of function. Libersat F; Clarac F; Zill S J Neurophysiol; 1987 May; 57(5):1618-37. PubMed ID: 3585482 [TBL] [Abstract][Full Text] [Related]
7. The effects of ethanol on intracellular potassium and the membrane potential of an identified crab motor axon. Stephens PJ Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992 Feb; 101(2):289-92. PubMed ID: 1354104 [TBL] [Abstract][Full Text] [Related]
8. Rapid sodium channel conductance changes during voltage clamp steps in squid giant axons. Fohlmeister JF; Adelman WJ Biophys J; 1984 Mar; 45(3):513-21. PubMed ID: 6324915 [TBL] [Abstract][Full Text] [Related]
9. 5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. Kiehn O; Harris-Warrick RM J Neurophysiol; 1992 Aug; 68(2):496-508. PubMed ID: 1382120 [TBL] [Abstract][Full Text] [Related]
10. Whole-cell analysis of ionic currents underlying the firing pattern of neurons in the gustatory zone of the nucleus tractus solitarii. Tell F; Bradley RM J Neurophysiol; 1994 Feb; 71(2):479-92. PubMed ID: 7513751 [TBL] [Abstract][Full Text] [Related]
11. In vitro characterization of neurons in the ventral part of the nucleus tractus solitarius. II. Ionic basis for repetitive firing patterns. Dekin MS; Getting PA J Neurophysiol; 1987 Jul; 58(1):215-29. PubMed ID: 2441002 [TBL] [Abstract][Full Text] [Related]
12. Distribution of ionic currents in the soma and growing region of an identified peptidergic neuron in defined culture. Meyers DE J Neurophysiol; 1993 Feb; 69(2):406-15. PubMed ID: 7681474 [TBL] [Abstract][Full Text] [Related]
13. Optimization of the leak conductance in the squid giant axon. Seely J; Crotty P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021906. PubMed ID: 20866836 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. Smith DO J Physiol; 1980 Apr; 301():243-59. PubMed ID: 7411430 [TBL] [Abstract][Full Text] [Related]
15. Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. Guttman R; Lewis S; Rinzel J J Physiol; 1980 Aug; 305():377-95. PubMed ID: 7441560 [TBL] [Abstract][Full Text] [Related]
16. Reexamination of the double sucrose gap technique for the study of lobster giant axons. Theory and experiments. Pooler JP; Valenzeno DP Biophys J; 1983 Nov; 44(2):261-9. PubMed ID: 6652217 [TBL] [Abstract][Full Text] [Related]
17. Layer I neurons of rat neocortex. I. Action potential and repetitive firing properties. Zhou FM; Hablitz JJ J Neurophysiol; 1996 Aug; 76(2):651-67. PubMed ID: 8871189 [TBL] [Abstract][Full Text] [Related]
18. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells. Chen Y; Sun XD; Herness S J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655 [TBL] [Abstract][Full Text] [Related]
19. The axon terminal of goldfish retinal horizontal cells: a low membrane conductance measured in solitary preparations and its implication to the signal conduction from the soma. Yagi T; Kaneko A J Neurophysiol; 1988 Feb; 59(2):482-94. PubMed ID: 3351572 [TBL] [Abstract][Full Text] [Related]
20. Exponentiated exponential model (Gompertz kinetics) of Na+ and K+ conductance changes in squid giant axon. Easton DM Biophys J; 1978 Apr; 22(1):15-28. PubMed ID: 638223 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]