These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 11594729)
1. Electrostatic recognition between enzyme and inhibitor: interaction between papain and leupeptin. Costabel M; Vallejo DF; Grigera JR Arch Biochem Biophys; 2001 Oct; 394(2):161-6. PubMed ID: 11594729 [TBL] [Abstract][Full Text] [Related]
2. Structural basis of the unusual stability and substrate specificity of ervatamin C, a plant cysteine protease from Ervatamia coronaria. Thakurta PG; Biswas S; Chakrabarti C; Sundd M; Jagannadham MV; Dattagupta JK Biochemistry; 2004 Feb; 43(6):1532-40. PubMed ID: 14769029 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic properties in the catalytic site of papain: A possible regulatory mechanism for the reactivity of the ion pair. Dardenne LE; Werneck AS; de Oliveira Neto M; Bisch PM Proteins; 2003 Aug; 52(2):236-53. PubMed ID: 12833547 [TBL] [Abstract][Full Text] [Related]
4. Overlapping binding sites for trypsin and papain on a Kunitz-type proteinase inhibitor from Prosopis juliflora. Franco OL; Grossi de Sá MF; Sales MP; Mello LV; Oliveira AS; Rigden DJ Proteins; 2002 Nov; 49(3):335-41. PubMed ID: 12360523 [TBL] [Abstract][Full Text] [Related]
5. Use of papain as a model for the structure-based design of cathepsin K inhibitors: crystal structures of two papain-inhibitor complexes demonstrate binding to S'-subsites. LaLonde JM; Zhao B; Smith WW; Janson CA; DesJarlais RL; Tomaszek TA; Carr TJ; Thompson SK; Oh HJ; Yamashita DS; Veber DF; Abdel-Meguid SS J Med Chem; 1998 Nov; 41(23):4567-76. PubMed ID: 9804696 [TBL] [Abstract][Full Text] [Related]
6. Theoretical studies of binding modes of two covalent inhibitors of cysteine proteases. Drabik P; Politowska E; Czaplewski C; Kasprzykowski F; Lankiewicz L; Ciarkowski J Acta Biochim Pol; 2000; 47(4):1061-6. PubMed ID: 11996096 [TBL] [Abstract][Full Text] [Related]
7. Crystal structures of calpain-E64 and -leupeptin inhibitor complexes reveal mobile loops gating the active site. Moldoveanu T; Campbell RL; Cuerrier D; Davies PL J Mol Biol; 2004 Nov; 343(5):1313-26. PubMed ID: 15491615 [TBL] [Abstract][Full Text] [Related]
8. Net charge center as the simplest model of a protein identifies up to 100% of active/binding site residues. Torshin I; Weber IT; Harrison RW Med Sci Monit; 2003 Aug; 9(8):BR289-301. PubMed ID: 12942025 [TBL] [Abstract][Full Text] [Related]
9. Toward the description of electrostatic interactions between globular proteins: potential of mean force in the primitive model. Dahirel V; Jardat M; Dufrêche JF; Turq P J Chem Phys; 2007 Sep; 127(9):095101. PubMed ID: 17824765 [TBL] [Abstract][Full Text] [Related]
10. The 1,4-naphthoquinone scaffold in the design of cysteine protease inhibitors. Valente C; Moreira R; Guedes RC; Iley J; Jaffar M; Douglas KT Bioorg Med Chem; 2007 Aug; 15(15):5340-50. PubMed ID: 17532221 [TBL] [Abstract][Full Text] [Related]
11. eta(1)-N-succinimidato complexes of iron, molybdenum and tungsten as reversible inhibitors of papain. Rudolf B; Salmain M; Martel A; Palusiak M; Zakrzewski J J Inorg Biochem; 2009 Aug; 103(8):1162-8. PubMed ID: 19616302 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulations of the three dimensional model of plasmepsin II-peptidic inhibitor complexes. Pranav Kumar SK; Kulkarni VM Drug Des Discov; 2001; 17(4):293-313. PubMed ID: 11765133 [TBL] [Abstract][Full Text] [Related]
13. [What forces can determine the formation of highly specific protein-protein complexes?]. Drozdov-Tikhomirov LN; Linde DM; Poroĭkov VV; Aleksandrov AA; Skurida GI; Kovalev PV; Potapov VIu Mol Biol (Mosk); 2003; 37(1):164-73. PubMed ID: 12624959 [TBL] [Abstract][Full Text] [Related]
14. Brownian dynamics simulations of the recognition of the scorpion toxin P05 with the small-conductance calcium-activated potassium channels. Cui M; Shen J; Briggs JM; Fu W; Wu J; Zhang Y; Luo X; Chi Z; Ji R; Jiang H; Chen K J Mol Biol; 2002 Apr; 318(2):417-28. PubMed ID: 12051848 [TBL] [Abstract][Full Text] [Related]
15. Probing electrostatic interactions and ligand binding in aspartyl-tRNA synthetase through site-directed mutagenesis and computer simulations. Thompson D; Lazennec C; Plateau P; Simonson T Proteins; 2008 May; 71(3):1450-60. PubMed ID: 18076053 [TBL] [Abstract][Full Text] [Related]
16. X-ray structures of free and leupeptin-complexed human alphaI-tryptase mutants: indication for an alpha-->beta-tryptase transition. Rohr KB; Selwood T; Marquardt U; Huber R; Schechter NM; Bode W; Than ME J Mol Biol; 2006 Mar; 357(1):195-209. PubMed ID: 16414069 [TBL] [Abstract][Full Text] [Related]
17. Quantum chemical analysis explains hemagglutinin peptide-MHC Class II molecule HLA-DRbeta1*0101 interactions. Cárdenas C; Villaveces JL; Bohórquez H; Llanos E; Suárez C; Obregón M; Patarroyo ME Biochem Biophys Res Commun; 2004 Oct; 323(4):1265-77. PubMed ID: 15451434 [TBL] [Abstract][Full Text] [Related]
18. The mechanism of papain inhibition by peptidyl aldehydes. Shokhen M; Khazanov N; Albeck A Proteins; 2011 Mar; 79(3):975-85. PubMed ID: 21181719 [TBL] [Abstract][Full Text] [Related]
19. Structural insights into the substrate specificity and activity of ervatamins, the papain-like cysteine proteases from a tropical plant, Ervatamia coronaria. Ghosh R; Chakraborty S; Chakrabarti C; Dattagupta JK; Biswas S FEBS J; 2008 Feb; 275(3):421-34. PubMed ID: 18167146 [TBL] [Abstract][Full Text] [Related]
20. Modeling H3 histone N-terminal tail and linker DNA interactions. La Penna G; Furlan S; Perico A Biopolymers; 2006 Oct; 83(2):135-47. PubMed ID: 16691563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]