These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 11594818)
1. A novel one-pot pyrrole synthesis via a coupling-isomerization-Stetter-Paal-Knorr sequence. Braun RU; Zeitler K; Müller TJ Org Lett; 2001 Oct; 3(21):3297-300. PubMed ID: 11594818 [TBL] [Abstract][Full Text] [Related]
2. Solution-phase synthesis of a tricyclic pyrrole-2-carboxamide discovery library applying a stetter-Paal-Knorr reaction sequence. Werner S; Iyer PS; Fodor MD; Coleman CM; Twining LA; Mitasev B; Brummond KM J Comb Chem; 2006; 8(3):368-80. PubMed ID: 16677007 [TBL] [Abstract][Full Text] [Related]
3. Catalytic multicomponent synthesis of highly substituted pyrroles utilizing a one-pot sila-Stetter/Paal-Knorr strategy. Bharadwaj AR; Scheidt KA Org Lett; 2004 Jul; 6(14):2465-8. PubMed ID: 15228305 [TBL] [Abstract][Full Text] [Related]
4. Solution phase synthesis of a library of tetrasubstituted pyrrole amides. Bianchi I; Forlani R; Minetto G; Peretto I; Regalia N; Taddei M; Raveglia LF J Comb Chem; 2006; 8(4):491-9. PubMed ID: 16827560 [TBL] [Abstract][Full Text] [Related]
5. α-Unsubstituted Pyrroles by NHC-Catalyzed Three-Component Coupling: Direct Synthesis of a Versatile Atorvastatin Derivative. Fleige M; Glorius F Chemistry; 2017 Aug; 23(45):10773-10776. PubMed ID: 28666059 [TBL] [Abstract][Full Text] [Related]
6. A novel three-component one-pot pyrimidine synthesis based upon a coupling-isomerization sequence. Müller TJ; Braun R; Ansorge M Org Lett; 2000 Jun; 2(13):1967-70. PubMed ID: 10891203 [TBL] [Abstract][Full Text] [Related]
7. Enantioselective Direct Synthesis of C3-Hydroxyalkylated Pyrrole via an Amine-Catalyzed Aldol/Paal-Knorr Reaction Sequence. Pawar AP; Yadav J; Dolas AJ; Nagare YK; Iype E; Rangan K; Kumar I Org Lett; 2022 Oct; 24(41):7549-7554. PubMed ID: 36219141 [TBL] [Abstract][Full Text] [Related]
8. Carbon-carbon bond formation and pyrrole synthesis via the [3,3] sigmatropic rearrangement of O-vinyl oxime ethers. Wang HY; Mueller DS; Sachwani RM; Londino HN; Anderson LL Org Lett; 2010 May; 12(10):2290-3. PubMed ID: 20411970 [TBL] [Abstract][Full Text] [Related]
10. A new facile approach to the synthesis of 3-methylthio-substituted furans, pyrroles, thiophenes, and related derivatives. Yin G; Wang Z; Chen A; Gao M; Wu A; Pan Y J Org Chem; 2008 May; 73(9):3377-83. PubMed ID: 18351746 [TBL] [Abstract][Full Text] [Related]
11. A novel 1,5-benzoheteroazepine synthesis via a one-Pot coupling-isomerization-cyclocondensation sequence. Braun RU; Zeitler K; Muller TJ Org Lett; 2000 Dec; 2(26):4181-4. PubMed ID: 11150194 [TBL] [Abstract][Full Text] [Related]
12. Covalent modification of biological targets with natural products through Paal-Knorr pyrrole formation. Kornienko A; La Clair JJ Nat Prod Rep; 2017 Aug; 34(9):1051-1060. PubMed ID: 28808718 [TBL] [Abstract][Full Text] [Related]
13. Heterocyclic alpha-alkylidene cyclopentenones obtained via a Pauson-Khand reaction of amino acid derived allenynes. A scope and limitation study directed toward the preparation of a tricyclic pyrrole library. Brummond KM; Curran DP; Mitasev B; Fischer S J Org Chem; 2005 Mar; 70(5):1745-53. PubMed ID: 15730297 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of two distinct pyrrole moiety-containing arenes from nitroanilines using Paal-Knorr followed by an indium-mediated reaction. Kim BH; Bae S; Go A; Lee H; Gong C; Lee BM Org Biomol Chem; 2016 Jan; 14(1):265-76. PubMed ID: 26593044 [TBL] [Abstract][Full Text] [Related]
15. Flow synthesis using gaseous ammonia in a Teflon AF-2400 tube-in-tube reactor: Paal-Knorr pyrrole formation and gas concentration measurement by inline flow titration. Cranwell PB; O'Brien M; Browne DL; Koos P; Polyzos A; Peña-López M; Ley SV Org Biomol Chem; 2012 Aug; 10(30):5774-9. PubMed ID: 22532036 [TBL] [Abstract][Full Text] [Related]
16. Intermediates in the Paal-Knorr synthesis of pyrroles. 4-Oxoaldehydes. Amarnath V; Amarnath K; Valentine WM; Eng MA; Graham DG Chem Res Toxicol; 1995 Mar; 8(2):234-8. PubMed ID: 7766806 [TBL] [Abstract][Full Text] [Related]
17. A general route to 1,3'-bipyrroles. Cheng P; Shao W; Clive DL J Org Chem; 2013 Dec; 78(23):11860-73. PubMed ID: 24251686 [TBL] [Abstract][Full Text] [Related]
18. Regioselective synthesis of 2,3,4- or 2,3,5-trisubstituted pyrroles via [3,3] or [1,3] rearrangements of O-vinyl oximes. Wang HY; Mueller DS; Sachwani RM; Kapadia R; Londino HN; Anderson LL J Org Chem; 2011 May; 76(9):3203-21. PubMed ID: 21449572 [TBL] [Abstract][Full Text] [Related]
19. Concise and versatile multicomponent synthesis of multisubstituted polyfunctional dihydropyrroles. Zhu Q; Jiang H; Li J; Liu S; Xia C; Zhang M J Comb Chem; 2009; 11(4):685-96. PubMed ID: 19552380 [TBL] [Abstract][Full Text] [Related]
20. One-pot synthesis of substituted 2,2'-bipyrroles. A straightforward route to aryl porphycenes. Sánchez-García D; Borrell JI; Nonell S Org Lett; 2009 Jan; 11(1):77-9. PubMed ID: 19053828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]