These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11595045)

  • 1. Additive and non-additive genetic architecture of two different-sized populations of Scabiosa canescens.
    Waldmann P
    Heredity (Edinb); 2001 Jun; 86(Pt 6):648-57. PubMed ID: 11595045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of genetic drift on variance components under a general model of epistasis.
    Barton NH; Turelli M
    Evolution; 2004 Oct; 58(10):2111-32. PubMed ID: 15562679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Significance of linkage disequilibrium and epistasis on genetic variances in noninbred and inbred populations.
    Viana JMS; Garcia AAF
    BMC Genomics; 2022 Apr; 23(1):286. PubMed ID: 35397494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A test of quantitative genetic theory using Drosophila- effects of inbreeding and rate of inbreeding on heritabilities and variance components.
    Kristensen TN; Sørensen AC; Sorensen D; Pedersen KS; Sørensen JG; Loeschcke V
    J Evol Biol; 2005 Jul; 18(4):763-70. PubMed ID: 16033547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broad and narrow heritabilities of quantitative traits in a founder population.
    Abney M; McPeek MS; Ober C
    Am J Hum Genet; 2001 May; 68(5):1302-7. PubMed ID: 11309690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bottlenecks on quantitative genetic variation in the butterfly Bicyclus anynana.
    Saccheri IJ; Nichols RA; Brakefield PM
    Genet Res; 2001 Apr; 77(2):167-81. PubMed ID: 11355572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EVOLUTIONARY PREDICTABILITY IN NATURAL POPULATIONS: DO MATING SYSTEM AND NONADDITIVE GENETIC VARIANCE INTERACT TO AFFECT HERITABILITIES IN PLANTAGO LANCEOLATA?
    Tonsor SJ; Goodnight CJ
    Evolution; 1997 Dec; 51(6):1773-1784. PubMed ID: 28565103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inbreeding depression in a rare plant, Scabiosa canescens (Dipsacaceae).
    Andersson S; Waldmann P
    Hereditas; 2002; 136(3):207-11. PubMed ID: 12471667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dominance and epistatic genetic variances for litter size in pigs using genomic models.
    Vitezica ZG; Reverter A; Herring W; Legarra A
    Genet Sel Evol; 2018 Dec; 50(1):71. PubMed ID: 30577727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accounting for dominance to improve genomic evaluations of dairy cows for fertility and milk production traits.
    Aliloo H; Pryce JE; González-Recio O; Cocks BG; Hayes BJ
    Genet Sel Evol; 2016 Feb; 48():8. PubMed ID: 26830030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epistasis and inheritance of plant habit and fruit quality traits in ornamental pepper (Capsicum annuum L.).
    Santos RM; do Rêgo ER; Borém A; Nascimento MF; Nascimento NF; Finger FL; Rêgo MM
    Genet Mol Res; 2014 Oct; 13(4):8876-87. PubMed ID: 25366779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic estimation of additive and dominance effects and impact of accounting for dominance on accuracy of genomic evaluation in sheep populations.
    Moghaddar N; van der Werf JHJ
    J Anim Breed Genet; 2017 Dec; 134(6):453-462. PubMed ID: 28833716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How does selfing affect the genetic variance of quantitative traits? An updated meta-analysis on empirical results in angiosperm species.
    Clo J; Gay L; Ronfort J
    Evolution; 2019 Aug; 73(8):1578-1590. PubMed ID: 31206658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimates of genetic variance in an F2 maize population.
    Wolf DP; Peternelli LA; Hallauer AR
    J Hered; 2000; 91(5):384-91. PubMed ID: 10994705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian inference of inbreeding depression in controlled crosses.
    Waldmann P
    Evolution; 2003 Aug; 57(8):1947-51. PubMed ID: 14503634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of various genetic components through NCD-I and NCD-III designs of biparental mating in opium poppy.
    Maurya KN; Pal PK; Asthana G; Srivastava A; Shukla S
    J Genet; 2019 Mar; 98():. PubMed ID: 30945678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genetic architecture of fitness in a seed beetle: assessing the potential for indirect genetic benefits of female choice.
    Bilde T; Friberg U; Maklakov AA; Fry JD; Arnqvist G
    BMC Evol Biol; 2008 Oct; 8():295. PubMed ID: 18950531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of dominance to the understanding of quantitative genetic variation.
    Wellmann R; Bennewitz J
    Genet Res (Camb); 2011 Apr; 93(2):139-54. PubMed ID: 21481291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redistribution of gene frequency and changes of genetic variation following a bottleneck in population size.
    Zhang XS; Wang J; Hill WG
    Genetics; 2004 Jul; 167(3):1475-92. PubMed ID: 15280256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary potential of Chamaecrista fasciculata in relation to climate change. II. Genetic architecture of three populations reciprocally planted along an environmental gradient in the great plains.
    Etterson JR
    Evolution; 2004 Jul; 58(7):1459-71. PubMed ID: 15341149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.