These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11595138)

  • 1. Inhibitory conditioning stimulus in transcranial magnetic stimulation reduces the number of excited spinal motor neurons.
    Mall V; Glocker FX; Fietzek U; Heinen F; Berweck S; Korinthenberg R; Rösler KM
    Clin Neurophysiol; 2001 Oct; 112(10):1810-3. PubMed ID: 11595138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure of activation of spinal motoneurones after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation.
    Andersen B; Westlund B; Krarup C
    J Physiol; 2003 Aug; 551(Pt 1):345-56. PubMed ID: 12824449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trial-to-trial size variability of motor-evoked potentials. A study using the triple stimulation technique.
    Rösler KM; Roth DM; Magistris MR
    Exp Brain Res; 2008 May; 187(1):51-9. PubMed ID: 18231784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The triple stimulation technique to study central motor conduction to the lower limbs.
    Bühler R; Magistris MR; Truffert A; Hess CW; Rösler KM
    Clin Neurophysiol; 2001 May; 112(5):938-49. PubMed ID: 11336912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased probability of repetitive spinal motoneuron activation by transcranial magnetic stimulation after muscle fatigue in healthy subjects.
    Andersen B; Felding UA; Krarup C
    J Appl Physiol (1985); 2012 Mar; 112(5):832-40. PubMed ID: 22174399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of discharge desynchronization on the size of motor evoked potentials: an analysis.
    Rösler KM; Petrow E; Mathis J; Arányi Z; Hess CW; Magistris MR
    Clin Neurophysiol; 2002 Nov; 113(11):1680-7. PubMed ID: 12417220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Desynchronization does not contribute to intracortical inhibition and facilitation: a paired-pulse paradigm study combined with TST.
    Caranzano L; Stephan MA; Herrmann FR; Benninger DH
    J Neurophysiol; 2017 Mar; 117(3):1052-1056. PubMed ID: 27974446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracortical inhibition of lower limb motor-evoked potentials after paired transcranial magnetic stimulation.
    Stokić DS; McKay WB; Scott L; Sherwood AM; Dimitrijević MR
    Exp Brain Res; 1997 Dec; 117(3):437-43. PubMed ID: 9438711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proximal motor conduction evaluated by transcranial magnetic stimulation in acquired inflammatory demyelinating neuropathies.
    Inaba A; Yokota T; Saito Y; Ichikawa T; Mizusawa H
    Clin Neurophysiol; 2001 Oct; 112(10):1936-45. PubMed ID: 11595155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First Prize: Central motor excitability changes after spinal manipulation: a transcranial magnetic stimulation study.
    Dishman JD; Ball KA; Burke J
    J Manipulative Physiol Ther; 2002 Jan; 25(1):1-9. PubMed ID: 11898013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials.
    Magistris MR; Rösler KM; Truffert A; Myers JP
    Brain; 1998 Mar; 121 ( Pt 3)():437-50. PubMed ID: 9549520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripheral stimulation affects subthreshold Triple Stimulation Technique.
    Caranzano L; Stephan MA; Bedulli M; Herrmann FR; Benninger DH
    J Neurosci Methods; 2021 Jan; 347():108959. PubMed ID: 33002507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of stimulus intensity and voluntary contraction on corticospinal potentials following transcranial magnetic stimulation.
    Kaneko K; Kawai S; Fuchigami Y; Shiraishi G; Ito T
    J Neurol Sci; 1996 Jul; 139(1):131-6. PubMed ID: 8836984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory influence of the ipsilateral motor cortex on responses to stimulation of the human cortex and pyramidal tract.
    Gerloff C; Cohen LG; Floeter MK; Chen R; Corwell B; Hallett M
    J Physiol; 1998 Jul; 510 ( Pt 1)(Pt 1):249-59. PubMed ID: 9625881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditioning the cortical silent period with paired transcranial magnetic stimulation.
    Silbert BI; Thickbroom GW
    Brain Stimul; 2013 Jul; 6(4):541-4. PubMed ID: 23092703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-latency sensory afferent inhibition: conditioning stimulus intensity, recording site, and effects of 1 Hz repetitive TMS.
    Fischer M; Orth M
    Brain Stimul; 2011 Oct; 4(4):202-9. PubMed ID: 22032735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive spinal motor neuron discharges following single transcranial magnetic stimuli: a quantitative study.
    Z'Graggen WJ; Humm AM; Durisch N; Magistris MR; Rösler KM
    Clin Neurophysiol; 2005 Jul; 116(7):1628-37. PubMed ID: 15908271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paired transcranial magnetic stimulations and motor evoked potentials.
    Jennum P; Winkel H; Fuglsang-Frederiksen A
    Electromyogr Clin Neurophysiol; 1996 Sep; 36(6):341-8. PubMed ID: 8891473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced intracortical inhibition and facilitation of corticospinal neurons in musicians.
    Nordstrom MA; Butler SL
    Exp Brain Res; 2002 Jun; 144(3):336-42. PubMed ID: 12021815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical motor neuron excitability during cutaneous silent period.
    Kaneko K; Kawai S; Taguchi T; Fuchigami Y; Yonemura H; Fujimoto H
    Electroencephalogr Clin Neurophysiol; 1998 Aug; 109(4):364-8. PubMed ID: 9751300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.